With the successful development of luminescent nanodiamond production, single diamond nanoparticles began to be actively used in the design of temperature and magnetic field nanosensors, quantum optical devices, and other nanotechnology applications. These applications require both express optical characterization of a large number of single nanoparticles and the ability to manipulate them. In this regard, the actual task is the low-density distribution of large ensembles of individual nanodiamonds on various substrates. In this study, we propose a vacuum technique for nanoparticle deposition on a substrate from its aqueous suspension, which has not been previously used in nanodiamond studies. The characteristic features of the spatial distribution of nanoparticles on a substrate were studied by atomic force microscopy. It has been shown that by reducing the nanodiamond concentration in the initial aqueous suspension, one can achieve a density of ≤1 particle/μm2 on almost the entire area of the substrate covered with nanodiamonds.

1.
E.
Scorsone
,
S.
Saada
,
J. C.
Arnault
, and
P.
Bergonzo
,
J. Appl. Phys.
106
,
014908
(
2009
).
2.
A.
Kromka
,
O.
Babchenko
,
H.
Kozak
,
K.
Hruska
,
B.
Rezek
,
M.
Ledinsky
,
J.
Potmesil
,
M.
Michalka
, and
M.
Vanecek
,
Diamond Relat. Mater.
18
,
734
(
2009
).
3.
O. A.
Williams
,
O.
Douhret
,
M.
Daenen
,
K.
Haenen
,
E.
Osawa
, and
M.
Takahashi
,
Chem. Phys. Lett.
445
,
255
(
2007
).
4.
V. V.
Danilenko
,
Phys. Solid State
46
,
595
(
2004
).
5.
A.
Kromka
,
B.
Rezek
,
Z.
Remes
,
M.
Michalka
,
M.
Ledinsky
,
J.
Zemek
,
J.
Potmesil
, and
M.
Vanecek
,
Chem. Vap. Depos.
14
,
181
(
2008
).
6.
H.
Girard
,
S.
Perruchas
,
C.
Gesset
,
M.
Chaigneau
,
L.
Vieille
,
J.
Arnault
,
P.
Bergonzo
,
J.
Boilot
, and
T.
Gacoin
,
ACS Appl. Mater. Interfaces
1
,
2738
(
2009
).
7.
M.
Couty
,
H.
Girard
, and
S.
Saada
,
ACS Appl. Mater. Interfaces
7
,
15752
(
2015
).
8.
P.
Verding
et al,
Surf. Coat. Technol.
459
,
129391
(
2023
).
9.
C.
Bradac
et al,
Nat. Nanotech.
5
,
345
(
2010
).
10.
I. I.
Vlasov
et al,
Nat. Nanotechnol.
9
,
54
(
2014
).
11.
A.
Vervald
,
A.
Lachko
,
O.
Kudryavtsev
,
O.
Shenderova
,
S.
Kuznetsov
,
I.
Vlasov
, and
T.
Dolenko
,
J. Phys. Chem. C
125
,
18247
(
2021
).
12.
W. W.
Kenneth
,
G. D.
Kenneth
, and
D. E.
Raymond
,
General Chemistry
,
4th ed.
(
Saunders College
, Philadelphia,
1992
).
13.
H. M.
Laurence
and
J.
Christopher
,
Experimental Organic Chemistry Principles and Practice
(
Blackwell Scientific
, Hoboken,
1990
).
14.
O.
Lorain
,
P.
Thiebaud
,
E.
Badorc
, and
Y.
Aurelle
,
Water Res.
35
,
541
(
2001
).
15.
M. S.
Komlenok
,
O. S.
Kudryavtsev
,
D. G.
Pasternak
,
I. I.
Vlasov
, and
V. I.
Konov
,
Comput. Opt.
45
,
860
(
2021
).
16.
A. M.
Romshin
,
V.
Zeeb
,
A. K.
Martyanov
,
O. S.
Kudryavtsev
,
D. G.
Pasternak
,
V. S.
Sedov
,
V. G.
Ralchenko
,
A. G.
Sinogeykin
, and
I. I.
Vlasov
,
Sci. Rep.
11
,
14228
(
2021
).
17.
A.
Romshin
,
A.
Gritsenko
,
P.
Lega
,
A.
Orlov
,
A.
Ilin
,
A.
Martyanov
,
V.
Sedov
,
I.
Vlasov
, and
A.
Vitukhnovsky
,
Laser Phys. Lett.
20
,
015206
(
2023
).

Supplementary Material

You do not currently have access to this content.