High-temperature annealing is a promising but still mainly unexplored method for enhancing spin properties of negatively charged nitrogen-vacancy (NV) centers in diamond particles. After high-energy irradiation, the formation of NV centers in diamond particles is typically accomplished via annealing at temperatures in the range of 800–900 °C for 1–2 h to promote vacancy diffusion. Here, we investigate the effects of conventional annealing (900 °C for 2 h) against annealing at a much higher temperature of 1600 °C for the same annealing duration for particles ranging in size from 100 nm to 15 μm using electron paramagnetic resonance and optical characterization. At this high temperature, the vacancy-assisted diffusion of nitrogen can occur. Previously, the annealing of diamond particles at this temperature was performed over short time scales because of concerns of particle graphitization. Our results demonstrate that particles that survive this prolonged 1600 °C annealing show increased NV T1 and T2 electron spin relaxation times in 1 and 15 μm particles, due to the removal of fast relaxing spins. Additionally, this high-temperature annealing also boosts magnetically induced fluorescence contrast of NV centers for particle sizes ranging from 100 nm to 15 μm. At the same time, the content of NV centers is decreased fewfold and reaches a level of <0.5 ppm. The results provide guidance for future studies and the optimization of high-temperature annealing of fluorescent diamond particles for applications relying on the spin properties of NV centers in the host crystals.

1.
S. E.
Crawford
,
R. A.
Shugayev
,
H. P.
Paudel
,
P.
Lu
,
M.
Syamlal
,
P. R.
Ohodnicki
,
B.
Chorpening
,
R.
Gentry
, and
Y.
Duan
,
Adv. Quantum Technol.
4
,
2100049
(
2021
).
2.
P.
Rembold
,
N.
Oshnik
,
M. M.
Müller
,
S.
Montangero
,
T.
Calarco
, and
E.
Neu
,
AVS Quantum Sci.
2
,
024701
(
2020
).
3.
J. F.
Barry
,
J. M.
Schloss
,
E.
Bauch
,
M. J.
Turner
,
C. A.
Hart
,
L. M.
Pham
, and
R. L.
Walsworth
,
Rev. Mod. Phys.
92
,
015004
(
2020
).
4.
P.
Maletinsky
,
S.
Hong
,
M. S.
Grinolds
,
B.
Hausmann
,
M. D.
Lukin
,
R. L.
Walsworth
,
M.
Loncar
, and
A.
Yacoby
,
Nat. Nanotechnol.
7
,
320
(
2012
).
5.
S. C.
Scholten
,
A. J.
Healey
,
I. O.
Robertson
,
G. J.
Abrahams
,
D. A.
Broadway
, and
J. P.
Tetienne
,
J. Appl. Phys.
130
,
150902
(
2021
).
6.
D. A.
Broadway
et al,
Nat. Electron.
1
,
502
(
2018
).
7.
8.
F. M.
Stürner
et al,
Adv. Quantum Technol.
4
,
2000111
(
2021
).
9.
P.
Balasubramanian
,
C.
Osterkamp
,
Y.
Chen
,
X.
Chen
,
T.
Teraji
,
E.
Wu
,
B.
Naydenov
, and
F.
Jelezko
,
Nano Lett.
19
,
6681
(
2019
).
11.
H.
Yukawa
et al,
Nanoscale Adv.
2
,
1859
(
2020
).
12.
K.
Hayashi
et al,
Phys. Rev. Appl.
10
,
034009
(
2018
).
13.
S.
Sotoma
,
C. P.
Epperla
, and
H.-C.
Chang
,
ChemNanoMat
4
,
15
(
2018
).
14.
J. C.
Price
,
R.
Mesquita-Ribeiro
,
F.
Dajas-Bailador
, and
M. L.
Mather
,
Front. Phys.
8
, 255 (
2020
).
15.
C.
Foy
,
L.
Zhang
,
M. E.
Trusheim
,
K. R.
Bagnall
,
M.
Walsh
,
E. N.
Wang
, and
D. R.
Englund
,
ACS Appl. Mater. Interfaces
12
,
26525
(
2020
).
16.
R.
Dou
,
G.
Zhu
,
W.-H.
Leong
,
X.
Feng
,
Z.
Li
,
C.
Lin
,
S.
Wang
, and
Q.
Li
,
Carbon
203
,
534
(
2023
).
17.
S.
Sotoma
,
F.-J.
Hsieh
,
Y.-W.
Chen
,
P.-C.
Tsai
, and
H.-C.
Chang
,
Chem. Commun.
54
,
1000
(
2018
).
18.
S. K.
Sarkar
,
A.
Bumb
,
X.
Wu
,
K. A.
Sochacki
,
P.
Kellman
,
M. W.
Brechbiel
, and
K. C.
Neuman
,
Biomed. Opt. Express
5
,
1190
(
2014
).
19.
R.
Chapman
and
T.
Plakhoitnik
,
Opt. Lett.
38
,
1847
(
2013
).
20.
Z. R.
Jones
,
N. J.
Niemuth
,
M. E.
Robinson
,
O. A.
Shenderova
,
R. D.
Klaper
, and
R. J.
Hamers
,
Environ. Sci. Nano
7
,
525
(
2020
).
21.
X.
Lv
et al,
Proc. Natl. Acad. Sci. U. S. A.
118
,
e2023579118
(
2021
).
25.
L.
Dei Cas
,
S.
Zeldin
,
N.
Nunn
,
M.
Torelli
,
A. I.
Shames
,
A. M.
Zaitsev
, and
O.
Shenderova
,
Adv. Funct. Mater.
29
,
1808362
(
2019
).
27.
M. D.
Torelli
et al,
Front. Phys.
8
, 205 (
2020
).
28.
O. A.
Shenderova
,
N. A.
Nunn
,
M. D.
Torelli
,
G. E.
McGuire
,
A. I.
Shames
, and
A. M.
Zaitsev
,
Phys. B: Condens. Matter
579
,
411868
(
2020
).
29.
M.
Gierth
et al,
Adv. Quantum Technol.
3,
2000050
(
2020
).
31.
V. Y.
Osipov
,
A. I.
Shames
,
T.
Enoki
,
K.
Takai
,
M. V.
Baidakova
, and
A. Y.
Vul
,
Diamond Relat. Mater.
16
,
2035
(
2007
).
32.
A. I.
Shames
,
V. Y.
Osipov
,
J. P.
Boudou
,
A. M.
Panich
,
H. J.
von Bardeleben
,
F.
Treussart
, and
A. Y.
Vul’
,
J. Phys. D: Appl. Phys.
48
,
155302
(
2015
).
33.
R.
de Sousa
, in
Electron Spin Resonance and Related Phenomena in Low-Dimensional Structures
, edited by
M.
Fanciulli
(
Springer Berlin Heidelberg
,
Heidelberg
,
2009
), pp.
183
220
.
34.
S.
Karaveli
et al,
Proc. Natl. Acad. Sci. U. S. A.
113
,
3938
(
2016
).
35.
D. V.
Fedoseev
,
S. P.
Vnukov
,
V. L.
Bukhovets
, and
B. A.
Anikin
,
Surf. Coat. Technol.
28
,
207
(
1986
).
36.
N.
Nunn
,
S.
Milikisiyants
,
E. O.
Danilov
,
M. D.
Torelli
,
L.
Dei Cas
,
A.
Zaitsev
,
O.
Shenderova
,
A. I.
Smirnov
, and
A. I.
Shames
,
J. Appl. Phys.
132
,
075106
(
2022
).
37.
A. I.
Shames
,
A. I.
Smirnov
,
S.
Milikisiyants
,
E. O.
Danilov
,
N.
Nunn
,
G.
McGuire
,
M. D.
Torelli
, and
O.
Shenderova
,
J. Phys. Chem. C
121
,
22335
(
2017
).
38.
R.
Hanson
,
O.
Gywat
, and
D. D.
Awschalom
,
Phys. Rev. B
74
,
161203
(
2006
).
39.
H.
Kanda
and
T.
Sekine
, in
Properties and Growth of Diamond
, edited by
G.
Davies
(
INSPEC, the Institution of Electrical Engineers
,
London
,
1993
).
40.
J. P.
Tetienne
,
L.
Rondin
,
P.
Spinicelli
,
M.
Chipaux
,
T.
Debuisschert
,
J. F.
Roch
, and
V.
Jacques
,
New J. Phys.
14
,
103033
(
2012
).
41.
See the supplementary material online for additional material related to single particle optical spin characterization, additional images of particles (including fluorescence images), and dynamic light scattering for particle sizes.

Supplementary Material

You do not currently have access to this content.