Microsphere photolithography (MPL) is an alternative low-cost technique for the large-scale fabrication of periodic structures, such as metasurfaces. This technique utilizes the photonic nanojet generated in the photoresist (PR), by microspheres in near proximity, which are exposed to collimated ultraviolet (UV) flood illumination. In the basic approach, a microsphere array is self-assembled on, or transferred to, the substrate prior to exposure. After exposure, the microspheres are washed away in the development step. The process to recover and clean these microspheres for reuse is complicated. This paper investigates the use of reusable microsphere masks created by fixing the microspheres on a UV transparent support. This is then brought into contact with the photoresist with controlled pressure. There is a trade-off between the quality of the fabricated samples and the wear of the mask determined by the contact pressure. The system is demonstrated using a digital micromirror device (DMD)-based direct-write exposure system to fabricate infrared (IR) metasurfaces. These metasurfaces are characterized and compared to simulation models. Finally, a series of 50 hierarchically patterned IR metasurfaces was fabricated using a single reusable mask. These samples had a <3% coefficient of variance when viewed with a thermal camera. This work shows the potential of mask-based MPL and other contact microlens array-based photolithography techniques for low-cost large-scale fabrication.

1.
M.
Khorasaninejad
,
W. T.
Chen
,
R. C.
Devlin
,
J.
Oh
,
A. Y.
Zhu
, and
F.
Capasso
,
Science
352
,
1190
(
2016
).
2.
A.
Pors
,
M. G.
Nielsen
,
R. L.
Eriksen
, and
S. I.
Bozhevolnyi
,
Nano Lett.
13
,
829
(
2013
).
3.
M. L.
Tseng
,
Y.
Jahani
,
A.
Leitis
, and
H.
Altug
,
ACS Photonics
8
,
47
(
2021
).
4.
J.
Valentine
,
J.
Li
,
T.
Zentgraf
,
G.
Bartal
, and
X.
Zhang
,
Nat. Mater.
8
,
568
(
2009
).
5.
G.
Zheng
,
H.
Mühlenbernd
,
M.
Kenney
,
G.
Li
,
T.
Zentgraf
, and
S.
Zhang
,
Nat. Nanotechnol.
10
,
308
(
2015
).
6.
W.
Yu
,
Y.
Lu
,
X.
Chen
,
H.
Xu
,
J.
Shao
,
X.
Chen
,
Y.
Sun
,
J.
Hao
, and
N.
Dai
,
Adv. Opt. Mater.
7
,
1900841
(
2019
).
7.
A. K.
Azad
,
W. J. M.
Kort-Kamp
,
M.
Sykora
,
N. R.
Weisse-Bernstein
,
T. S.
Luk
,
A. J.
Taylor
,
D. A. R.
Dalvit
, and
H.-T.
Chen
,
Sci. Rep.
6
,
20347
(
2016
).
8.
Y.
Zhang
,
L.
Liang
,
J.
Yang
,
Y.
Feng
,
B.
Zhu
,
J.
Zhao
,
T.
Jiang
,
B.
Jin
, and
W.
Liu
,
Sci. Rep.
6
,
26875
(
2016
).
9.
A.
Pique
and
D. B.
Chrisey
,
Direct-Write Technologies for Rapid Prototyping Applications: Sensors, Electronics, and Integrated Power Sources
(
Academic
, San Diego, CA,
2002
).
10.
S. Y.
Chou
,
P. R.
Krauss
, and
P. J.
Renstrom
,
J. Vac. Sci. Technol. B
14
,
4129
(
1996
).
11.
D. J.
Resnick
,
S. V.
Sreenivasan
, and
C. G.
Willson
,
Mater. Today
8
,
34
(
2005
).
12.
M.
Pudas
,
J.
Hagberg
, and
S.
Leppävuori
,
J. Eur. Ceram. Soc.
24
,
2943
(
2004
).
13.
C.
Lu
and
R. h.
Lipson
,
Laser Photonics Rev.
4
,
568
(
2010
).
14.
C. L.
Haynes
and
R. P.
Van Duyne
,
J. Phys. Chem. B
105
,
5599
(
2001
).
15.
H.
Mohseni
, Frontiers in Optics 2015, 18–22 October 2015, San Jose, CA (Optical Society of America, Washington, DC, 2015), Paper FM3B.4.
16.
C.
Qu
and
E. C.
Kinzel
,
Opt. Lett.
41
,
3399
(
2016
).
17.
C.
Qu
and
E. C.
Kinzel
,
Opt. Express
25
,
12632
(
2017
).
18.
A.
Bonakdar
,
S. J.
Jang
,
R. L.
Brown
,
M.
Rezaei
, and
H.
Mohseni
,
Proc. SPIE
9170
,
917016
(
2014
).
19.
W.
Wu
,
D.
Dey
,
O. G.
Memis
,
A.
Katsnelson
, and
H.
Mohseni
,
Nanoscale Res. Lett.
3
,
351
(
2008
).
20.
H.
Zheng
,
Y.
Zhou
,
C. F.
Ugwu
,
A.
Du
,
I. I.
Kravchenko
, and
J. G.
Valentine
,
ACS Photonics
8
,
1824
(
2021
).
21.
C.
Zhu
,
C.
Qu
, and
E. C.
Kinzel
,
Appl. Opt.
60
,
7122
(
2021
).
22.
L.
Berthod
,
O.
Shavdina
,
F.
Vocanson
,
M.
Langlet
,
O.
Dellea
,
C.
Veillas
,
S.
Reynaud
,
I.
Verrier
, and
Y.
Jourlin
,
Microelectron. Eng.
177
,
46
(
2017
).
23.
I.-T.
Chen
,
E.
Schappell
,
X.
Zhang
, and
C.-H.
Chang
,
Microsyst. Nanoeng.
6
,
1
(
2020
).
24.
X.
Sedao
,
T. J.-Y.
Derrien
,
G. R. B. E.
Romer
,
B.
Pathiraj
, and
A. J.
Huis in ‘t Veld
,
J. Appl. Phys.
112
,
103111
(
2012
).
25.
T.
Yamasaki
and
T.
Tsutsui
,
Jpn. J. Appl. Phys.
38
,
5916
(
1999
).
26.
P.-S.
Tsai
,
Y.-M.
Yang
, and
Y.-L.
Lee
,
Nanotechnology
18
,
465604
(
2007
).
27.
P.
Kumnorkaew
,
Y.-K.
Ee
,
N.
Tansu
, and
J. F.
Gilchrist
,
Langmuir
24
,
12150
(
2008
).
28.
D.
Kraus
,
J. K. N.
Lindner
, and
B.
Stritzker
,
Nucl. Instrum. Methods Phys. Res. B
257
,
455
(
2007
).
29.
J. K. N.
Lindner
,
B.
Gehl
, and
B.
Stritzker
,
Nucl. Instrum. Methods Phys. Res. B
242
,
167
(
2006
).
30.
C.
Qu
and
E. C.
Kinzel
, International Manufacturing Science and Engineering Conference, 18–22 June 2018, College Station, TX (American Society of Mechanical Engineers, New York, 2018), Vol. 51388.
31.
C.
O’Connell
,
R. J.
Sherlock
, and
T. J.
Glynn
,
Opt. Eng.
49
,
014201
(
2010
).
32.
M.-H.
Wu
and
G. M.
Whitesides
,
Appl. Phys. Lett.
78
,
2273
(
2001
).
33.
J. N.
Reddy
,
Theory and Analysis of Elastic Plates and Shells
,
2nd ed.
(
CRC
,
Boca Raton
,
FL
,
2006
).
You do not currently have access to this content.