We have been developing a vacuum electrospray droplet ion (V-EDI) beam technique that uses water droplet ions generated by electrospraying aqueous solutions under vacuum. The V-EDI beam is one of the massive cluster ion beams that have the potential to significantly improve the performance of surface analysis. In order to utilize the V-EDI beams effectively as ionization and sputtering probes in secondary ion mass spectrometry and x-ray photoelectron spectroscopy, it is necessary to optimize the sizes and charge states of the droplet ions included in the V-EDI beams. However, the droplet ions themselves in the V-EDI beams are not well understood. In this study, the V-EDI beams generated from the capillaries with different inner diameters were irradiated on polystyrene film samples under constant electrospray and accelerating voltage conditions, and then their surfaces were analyzed with atomic force microscopy and spectroscopic ellipsometer. The impact trace distributions produced by the droplet ions and the sputtered volumes produced by each droplet ion impact were investigated.

1.
A. V.
Walker
and
N.
Winograd
,
Appl. Surf. Sci.
203–204
,
198
(
2003
).
2.
N.
Davies
,
D. E.
Weibel
,
P.
Blenkinsopp
,
N.
Lockyer
,
R.
Hill
, and
J. C.
Vickerman
,
Appl. Surf. Sci.
203–204
,
223
(
2003
).
3.
F.
Kollmer
,
Appl. Surf. Sci.
231–232
,
153
(
2004
).
4.
S. C. C.
Wong
,
R.
Hill
,
P.
Blenkinsopp
,
N. P.
Lockyer
,
D. E.
Weibel
, and
J. C.
Vickerman
,
Appl. Surf. Sci.
203–204
,
219
(
2003
).
5.
D.
Weibel
,
S.
Wong
,
N.
Lockyer
,
P.
Blenkinsopp
,
R.
Hill
, and
J. C.
Vickerman
,
Anal. Chem.
75
,
1754
(
2003
).
6.
A. G.
Shard
,
F. M.
Green
,
P. J.
Brewer
,
M. P.
Seah
, and
I. S.
Gilmore
,
J. Phys. Chem. B
112
,
2596
(
2008
).
7.
J.
Kozole
,
A.
Wucher
, and
N.
Winograd
,
Anal. Chem.
80
,
5293
(
2008
).
8.
S.
Ninomiya
,
Y.
Nakata
,
K.
Ichiki
,
T.
Seki
,
T.
Aoki
, and
J.
Matsuo
,
Nucl. Instrum. Methods Phys. Res., Sect. B
256
,
493
(
2007
).
9.
S.
Ninomiya
,
K.
Ichiki
,
H.
Yamada
,
Y.
Nakata
,
T.
Seki
,
T.
Aoki
, and
J.
Matsuo
,
Rapid Commun. Mass Spectrom.
23
,
1601
(
2009
).
10.
J. L. S.
Lee
,
S.
Ninomiya
,
J.
Matsuo
,
I. S.
Gilmore
,
M. P.
Seah
, and
A. G.
Shard
,
Anal. Chem.
82
,
98
(
2010
).
11.
I.
Yamada
,
J.
Matsuo
,
N.
Toyoda
, and
A.
Kirkpatrick
,
Mater. Sci. Eng. R
34
,
231
(
2001
).
12.
T.
Miyayama
,
N.
Sanada
,
M.
Suzuki
,
J. S.
Hammond
,
S.-Q. D.
Si
, and
A.
Takahara
,
J. Vac. Sci. Technol. A
28
,
L1
(
2010
).
13.
M. K.
Passarelli
et al,
Nat. Methods
14
,
1175
(
2017
).
14.
V.
Delmez
,
B.
Tomasetti
,
T.
Daphnis
,
C.
Poleunis
,
C.
Lauzin
,
C.
Dupont-Gillain
, and
A.
Delcorte
,
ACS Appl. Bio Mater.
5
,
3180
(
2022
).
15.
H.-Y.
Chang
,
W.-C.
Lin
,
P.-C.
Chu
,
Y.-K.
Wang
,
M.
Sogo
,
S.
Iida
,
C.-J.
Peng
, and
T.
Miyayama
,
ACS Appl. Nano Mater.
5
,
4260
(
2022
).
16.
S.
Sheraz née Rabbani
,
A.
Barber
,
J. S.
Fletcher
,
N. P.
Lockyer
, and
J. C.
Vickerman
,
Anal. Chem.
85
,
5654
(
2013
).
17.
K.
Moritani
,
M.
Kanai
,
K.
Goto
,
I.
Ihara
,
N.
Inui
, and
K.
Mochiji
,
Nucl. Instrum. Methods Phys. Res., Sect. B
315
,
300
(
2013
).
18.
A.
Wucher
,
H.
Tian
, and
N.
Winograd
,
Rapid Commun. Mass Spectrom.
28
,
396
(
2014
).
19.
H.
Tian
,
D.
Maciążek
,
Z.
Postawa
,
B. J.
Garrison
, and
N.
Winograd
,
J. Am. Soc. Mass Spectrom.
30
,
476
(
2019
).
20.
S. J.
Lee
et al,
Appl. Surf. Sci.
572
,
151467
(
2022
).
21.
J. F.
Mahoney
,
J.
Perel
,
S. A.
Martino
,
S.
Husain
, and
T. D.
Lee
,
Rapid Commun. Mass Spectrom.
5
,
441
(
1991
).
22.
J.
Zhang
,
K.
Franzreb
, and
P.
Williams
,
Rapid Commun. Mass Spectrom.
28
,
2211
(
2014
).
23.
J.
Zhang
,
K.
Franzreb
,
S. A.
Aksyonov
, and
P.
Williams
,
Anal. Chem.
87
,
10779
(
2015
).
24.
Y.
Fujiwara
and
N.
Saito
,
Rapid Commun Mass Spectrom.
30
,
239
(
2016
).
25.
A.
Tempez
et al,
Rapid Commun. Mass Spectrom.
18
,
371
(
2004
).
26.
M.
Baur
,
B.-J.
Lee
,
C. R.
Gebhardt
, and
M.
Dürr
,
Appl. Phys. Lett.
99
,
234103
(
2011
).
27.
K.
Hiraoka
,
D.
Asakawa
,
S.
Fujimaki
,
A.
Takamizawa
, and
K.
Mori
,
Eur. Phys. J. D
38
,
225
(
2006
).
28.
K.
Hiraoka
,
K.
Mori
, and
D.
Asakawa
,
J. Mass Spectrom.
41
,
894
(
2006
).
29.
S.
Ninomiya
,
L. C.
Chen
,
H.
Suzuki
,
Y.
Sakai
, and
K.
Hiraoka
,
Rapid Commun. Mass Spectrom.
26
,
863
(
2012
).
30.
S.
Ninomiya
,
Y.
Sakai
,
R.
Watanabe
,
M.
Sogou
,
T.
Miyayama
,
D.
Sakai
,
K.
Watanabe
,
L. C.
Chen
, and
K.
Hiraoka
,
Rapid Commun. Mass Spectrom.
30
,
2279
(
2016
).
31.
S.
Ninomiya
,
L. C.
Chen
, and
K.
Hiraoka
,
J. Vac. Sci. Technol. B
36
,
03F134
(
2018
).
32.
S.
Ninomiya
,
Y.
Sakai
,
L. C.
Chen
, and
K.
Hiraoka
,
Mass Spectrom.
7
,
A0069
(
2018
).
33.
Y.
Sakai
,
Y.
Iijima
,
D.
Asakawa
, and
K.
Hiraoka
,
Surf. Interface Anal.
42
,
658
(
2010
).
34.
Y.
Sakai
,
S.
Ninomiya
, and
K.
Hiraoka
,
Surf. Interface Anal.
44
,
938
(
2012
).
35.
Y.
Sakai
,
R.
Takaishi
,
S.
Ninomiya
, and
K.
Hiraoka
,
Surf. Interface Anal.
47
,
77
(
2015
).
36.
P.
Kebarle
and
U. H.
Verkerk
, in
Electrospray and MALDI Mass Spectrometry
,
2nd ed.
, edited by
R. B.
Cole
(
Wiley
,
Hoboken, NJ
,
2010
), pp.
3
48
.
37.
L.
Rayleigh
,
Philos. Mag. (Ser.5)
14
,
184
(
1882
).
38.
See supplementary material at https://www.scitation.org/doi/suppl/10.1116/6.0002529 for details of the AFM and SE parameters and the effect of dose on sputtered depth.

Supplementary Material

You do not currently have access to this content.