Molecular dynamics computer simulations are employed to investigate processes leading to particle ejection from single-wall carbon nanotubes bombarded by keV C60 projectiles. The effect of the primary kinetic energy, the incidence angle, and the nanotube diameter on the ejection process is studied. Armchair nanotubes with diameters of 3.26, 5.4, and 8.2 nm are tested. C60 projectiles bombard these targets with kinetic energy between 3 and 50 keV and the angle of incidence ranging between 0° and 75°. The particle ejection yield is a result of the interplay between the amount of kinetic energy available for breaking interatomic bonds, the size of the bombarded area, and the size and form of projectiles hitting this area. Much of the initial kinetic energy is dissipated in the nanotubes as waves, especially for low-energy impacts. Computer simulations are used to find the optimal conditions leading to the gentle ejection of unfragmented organic molecules adsorbed on nanotube substrates. This knowledge may be helpful in the potential application of nanotube substrates in secondary ion mass spectrometry or secondary neutral mass spectrometry.

2.
B. H.
Nguyen
and
V. H.
Nguyen
,
Adv. Nat. Sci.: Nanosci. Nanotechnol.
7
,
023002
(
2016
).
3.
K. L.
Zhang
,
Y. L.
Feng
,
F.
Wang
,
Z. C.
Yang
, and
J.
Wang
,
J. Mater. Chem. C
5
,
11992
(
2017
).
4.
X. M.
Li
,
L.
Tao
,
Z. F.
Chen
,
H.
Fang
,
X. S.
Li
,
X. R.
Wang
,
J. B.
Xu
, and
H. W.
Zhu
,
Appl. Phys. Rev.
4
,
021306
(
2017
).
5.
A. V.
Krasheninnikov
and
K.
Nordlund
,
J. Appl. Phys.
107
,
071301
(
2010
).
6.
Z. T.
Bai
,
L.
Zhang
, and
L.
Liu
,
J. Phys. Chem. C
119
,
26793
(
2015
).
7.
J. H.
Kim
,
J. H.
Hwang
,
J.
Suh
,
S.
Tongay
,
S.
Kwon
,
C. C.
Hwang
,
J. Q.
Wu
, and
J.
Young Park
,
Appl. Phys. Lett.
103
,
171604
(
2013
).
8.
M.
Kalbac
,
O.
Lehtinen
,
A. V.
Krasheninnikov
, and
J.
Keinonen
,
Adv. Mater.
25
,
1004
(
2013
).
9.
M.
Zahid Hossain
,
S.
Rumyantsev
,
M. S.
Shur
, and
A. A.
Balandin
,
Appl. Phys. Lett.
102
,
153512
(
2013
).
10.
C.
Carpenter
,
D.
Maroudas
, and
A.
Ramasubramaniam
,
Appl. Phys. Lett.
103
,
013102
(
2013
).
11.
M. D.
Fischbein
and
M.
Drndic
,
Appl. Phys. Lett.
93
,
113107
(
2008
).
12.
N.
Inui
,
K.
Mochiji
,
K.
Moritani
, and
N.
Nakashima
,
Appl. Phys. A
98
,
787
(
2010
).
13.
C. A.
Merchant
et al,
Nano Lett.
10
,
2915
(
2010
).
14.
Y. Z.
He
,
H.
Li
,
P. C.
Si
,
Y. F.
Li
,
H. Q.
Yu
,
X. Q.
Zhang
,
F.
Ding
,
K. M.
Liew
, and
X. F.
Liu
,
Appl. Phys. Lett.
98
,
063101
(
2011
).
15.
S. J.
Zhao
,
J. M.
Xue
,
L.
Liang
,
Y. G.
Wang
, and
S.
Yan
,
J. Phys. Chem. C
116
,
11776
(
2012
).
16.
Y. N.
Dong
,
Y. Z.
He
,
Y.
Wang
, and
H.
Li
,
Carbon
68
,
742
(
2014
).
17.
Z.
Zabihi
and
H.
Araghi
,
Nucl. Instrum. Methods Phys. Res., Sect. B
343
,
48
(
2015
).
18.
B. J.
Tyler
,
B.
Brennan
,
H.
Stec
,
T.
Patel
,
L.
Hao
,
I. S.
Gilmore
, and
A. J.
Pollard
,
J. Phys. Chem. C
119
,
17836
(
2015
).
19.
G. R.
Berdiyorov
,
B.
Mortazavi
,
S.
Ahzi
,
F. M.
Peeters
, and
M. K.
Khraisheh
,
J. Appl. Phys.
120
,
225108
(
2016
).
20.
M. U.
Kucukkal
and
S. J.
Stuart
,
J. Mol. Model.
23
,
148
(
2017
).
21.
R.
Abadi
,
M.
Izadifar
,
M.
Sepahi
,
N.
Alajlan
, and
T.
Rabczuk
,
Physica E
103
,
403
(
2018
).
22.
J.
Luo
,
T. H.
Gao
,
L.
Li
,
Q.
Xie
,
Z.
Tian
,
Q.
Chen
, and
Y. C.
Liang
,
J. Mater. Sci.
54
,
14431
(
2019
).
24.
S. V.
Verkhoturov
,
S.
Geng
,
B.
Czerwinski
,
A. E.
Young
,
A.
Delcorte
, and
E. A.
Schweikert
,
J. Chem. Phys.
143
,
164302
(
2015
).
25.
S.
Geng
,
S. V.
Verkhoturov
,
M. J.
Eller
,
A. B.
Clubb
, and
E. A.
Schweikert
,
J. Vac. Sci. Technol. C
34
,
03h117
(
2016
).
26.
S.
Geng
,
S. V.
Verkhoturov
,
M. J.
Eller
,
S.
Della-Negra
, and
E. A.
Schweikert
,
J. Chem. Phys.
146
,
054305
(
2017
).
27.
P. P.
Michalowski
,
W.
Kaszub
,
I.
Pasternak
, and
W.
Strupinski
,
Sci. Rep.
7
,
7479
(
2017
).
28.
B. J.
Garrison
and
Z.
Postawa
, in
ToF-SIMS—Surface Analysis by Mass Spectrometry
,
2nd ed.
, edited by
J. C.
Vickerman
and
D.
Briggs
(
IMP & SurfaceSpectra Ltd
,
Chichester
,
2013
), p.
151
.
29.
M.
Golunski
and
Z.
Postawa
,
Acta Phys. Pol.
132
,
222
(
2017
).
30.
M.
Golunski
,
S. V.
Verkhoturov
,
D. S.
Verkhoturov
,
E. A.
Schweikert
, and
Z.
Postawa
,
Nucl. Instrum. Methods Phys. Res., Sect. B
393
,
13
(
2017
).
31.
M.
Golunski
and
Z.
Postawa
,
J. Vac. Sci. Technol. C
36
,
03F112
(
2018
).
32.
S. V.
Verkhoturov
,
M.
Golunski
,
D. S.
Verkhoturov
,
B.
Czerwinski
,
M. J.
Eller
,
S.
Geng
,
Z.
Postawa
, and
E. A.
Schweikert
,
J. Chem. Phys.
150
,
160901
(
2019
).
33.
S. V.
Verkhoturov
, private communication (18 September 2022).
34.
X.
Pu
,
G.
Yang
, and
C.
Yu
,
Adv. Mater.
26
,
7456
(
2014
).
35.
J.
Pomoell
,
A. V.
Krasheninnikov
,
K.
Nordlund
, and
J.
Keinonen
,
Nucl. Instrum. Methods Phys. Res., Sect. B
206
,
18
(
2003
).
36.
J. A. V.
Pomoell
,
A. V.
Krasheninnikov
,
K.
Nordlund
, and
J.
Keinonen
,
J. Appl. Phys.
96
,
2864
(
2004
).
37.
S.
Charnvanichborikarn
,
S. J.
Shin
,
M. A.
Worsley
, and
S. O.
Kucheyev
,
Appl. Phys. Lett.
101
,
103114
(
2012
).
38.
E. C.
Neyts
,
K.
Ostrikov
,
Z. J.
Han
,
S.
Kumar
,
A. C. T.
van Duin
, and
A.
Bogaerts
,
Phys. Rev. Lett.
110
,
065501
(
2013
).
39.
X. M.
Yang
,
L. J.
Wang
,
Y. H.
Huang
,
Z. H.
Han
, and
A. C.
To
,
Phys. Chem. Chem. Phys.
16
,
21615
(
2014
).
40.
N.
Winograd
,
Anal. Chem.
77
,
142 A
(
2005
).
41.
L. C.
Liu
,
Y.
Liu
,
S. V.
Zybin
,
H.
Sun
, and
W. A.
Goddard
,
J. Phys. Chem. A
115
,
11016
(
2011
).
42.
S. J.
Stuart
,
A. B.
Tutein
, and
J. A.
Harrison
,
J. Chem. Phys.
112
,
6472
(
2000
).
43.
Z. G.
Fthenakis
,
I. D.
Petsalakis
,
V.
Tozzini
, and
N. N.
Lathiotakis
,
Front. Chem.
10
,
951261
(
2022
).
44.
T. C.
Dinadayalane
,
J. S.
Murray
,
M. C.
Concha
,
P.
Politzer
, and
J.
Leszczynski
,
J. Chem. Theory Comput.
6
,
1351
(
2010
).
45.
Z.
Postawa
,
B.
Czerwinski
,
M.
Szewczyk
,
E. J.
Smiley
,
N.
Winograd
, and
B. J.
Garrison
,
Anal. Chem.
75
,
4402
(
2003
).
46.
47.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
,
J. Mol. Graph.
14
,
33
(
1996
).
48.
B.
Czerwinski
,
R.
Samson
,
B. J.
Garrison
,
N.
Winograd
, and
Z.
Postawa
,
Vacuum
81
,
167
(
2006
).
49.
H. H.
Andersen
and
H. L.
Bay
,
J. Appl. Phys.
45
,
953
(
1974
).
50.
M.
Kerford
and
R. P.
Webb
,
Nucl. Instrum. Methods Phys. Res., Sect. B
180
,
44
(
2001
).
51.
R. P.
Webb
,
Radiat. Eff. Defects Solids
162
,
567
(
2007
).
52.
See supplementary material at https://www.scitation.org/doi/suppl/10.1116/6.0002575 for additional data, the procedure for calculating the weighting factor, and animations showing the impact of C60 projectiles with kinetic energy of 5 and 50 keV on nanotubes with diameters of 3.26 and 8.2 nm.

Supplementary Material

You do not currently have access to this content.