Three dimensional packaging schemes take advantage of multiple substrate materials, functionality, and reduced area constraints. Alignment of stacks of wafers becomes difficult as the number increases. We investigate full-wafer self-alignment as a means for solving this problem. To date, capillary self-alignment has only been accomplished with tiny, millimeter-sale, objects. Here, wafer-level self-alignment is demonstrated with capillary alignment forces, and we describe several needed, nontrivial advances and considerations compared to the chip alignment. The patterning scheme and the alignment force character are found to be crucial to ensure alignment at the wafer scale. Avoidance of alignment at local minima with the use of multiple length scales, prevention of upper wafer dragging by balancing the wafer and using engineered flow channels, and increased pattern features at small misalignments to combat the decreased alignment force are all discussed. A capture range of a few millimeters in position and several degrees in rotation for the self-alignment is achieved by patterning a hydrophobic self-assembled monolayer. These advances for large structure self-alignment offer a path forward for self-assembly of wafer stacks or other complex, large structures useful for mmWave, 5G antennas, for example. The scheme is compatible with a bonding scheme using the bonding precursor as the alignment fluid.

1.
S.
Burkett
,
D.
Temple
,
B.
Stoner
,
C.
Craigie
,
X.
Qiao
, and
G.
McGuire
, “Processing techniques for vertical interconnects,” 2001 International Semiconductor Device Research Symposium. Symposium Proceedings (Cat. No.01EX497), Washington, DC, 5–7 December 2001 (IEEE, Piscataway, NJ, 2001), pp. 403–406.
2.
G.
McGuire
, private communication (14 February 2008).
3.
A.
Terfort
,
N.
Bowden
, and
G. M.
Whitesides
,
Nature
386
,
162
(
1997
).
4.
T.
Ohba
,
N.
Maeda
,
H.
Kitada
,
K.
Fujimoto
,
K.
Suzuki
,
T.
Nakamura
,
A.
Kawai
, and
K.
Arai
,
Microelectron. Eng.
87
,
485
(
2010
).
5.
S. H.
Lee
,
K.-N.
Chen
, and
J. J.-Q.
Lu
,
J. Microelectromech. Syst.
20
,
885
(
2011
).
6.
A.
Narimannezhad
,
J.
Jennings
,
M.
Weber
, and
K.
Lynn
,
J. Microelectromech. Syst.
25
,
725
(
2016
).
7.
A.
Emanuel
and
H. D.
Hallen
,
Transl. Mater. Res.
5
,
025001
(
2018
).
8.
I.
Sugaya
,
H.
Mitsuishi
,
H.
Maeda
,
T.
Tsuto
,
H.
Nakahira
,
M.
Okada
, and
K.
Okamoto
, “Precision wafer bonding process for future cost-effective 3DICs,” 26th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC), Saratoga Springs, NY, 3-6 May 2015 (IEEE, Piscataway, NJ, 2015), pp. 429–434.
9.
J.
De Vos
et al., “Importance of alignment control during permanent bonding and its impact on via-last alignment for high density 3D interconnects,” 2016 IEEE International 3D Systems Integration Conference (3DIC), San Francisco, CA, 8–11 November 2016 (IEEE, Piscataway, NJ, 2016), p. 5.
10.
K. F.
Böhringer
,
J. Micromech. Microeng.
13
,
S1
(
2003
).
11.
J.
Xiao
,
R. R.
Chaudhuri
, and
S.-W.
Seo
,
IEEE Trans. Compon. Packag. Manuf. Technol.
6
,
1283
(
2016
).
12.
M.
Koyanagi
,
K.
Lee
,
T.
Fukushima
, and
T.
Tanaka
, “New multichip-to-wafer 3D integration technology using self-assembly and cu nano-pillar hybrid bonding,” 2016 13th IEEE International Conference on Solid-State and Integrated Circuit Technology, ICSICT 2016—Proceedings, Hangzou, China, 25–28 October 2016 (IEEE, Piscataway, NJ, 2016), pp. 338–341.
13.
T.
Fukushima
,
H.
Hashiguchi
,
H.
Kino
,
T.
Tanaka
,
M.
Murugesan
,
J.
Bea
,
H.
Hashimoto
,
K.
Lee
, and
M.
Koyanagi
, “Transfer and non-transfer 3D stacking technologies based on multichip-to-wafer self-assembly and direct bonding,” Proceedings—Electronic Components and Technology Conference, Las Vegas, NV, 31 May–3 June 2016 (IEEE, Piscataway, NJ, 2016), Vol. 2016, pp. 289–294.
14.
J.
Lu
,
Y.
Nakano
,
H.
Takagi
, and
R.
Maeda
,
IEEE Sens. J.
13
,
651
(
2013
).
15.
A.
Uddin
,
K.
Milaninia
,
C.-H.
Chen
, and
L.
Theogarajan
, “Wafer scale integration of CMOS chips for biomedical applications via self-aligned masking,”
IEEE Trans. Compon., Packag., Manuf. Technol.
1
, 1996 (
2011
).
16.
T.
Fukushima
,
E.
Iwata
,
T.
Konno
,
J.-C.
Bea
,
K.-W.
Lee
,
T.
Tanaka
, and
M.
Koyanagi
,
Appl. Phys. Lett.
96
,
154105
(
2010
).
17.
J.
Lu
,
H.
Takagi
,
Y.
Nakano
, and
R.
Maeda
, “Size-free MEMS-IC high-efficient integration by using carrier wafer with self-assembled monolayer (SAM) fine pattern,” Proceedings—Electronic Components and Technology Conference, Las Vegas, NV, 28–31 May 2013 (IEEE, Piscataway, NJ, 2013), pp. 1508–1513.
18.
T.
Fukushima
,
E.
Iwata
,
K.-W.
Lee
,
T.
Tanaka
, and
M.
Koyanagi
, “Self-assembly technology for reconfigured wafer-to-wafer 3D integration,” Proceedings—Electronic Components and Technology Conference, Las Vegas, NV, 1-4 June 2010 (IEEE, Piscataway, NJ, 2010), pp. 1050–1055.
19.
P.
Gueguen
,
C.
Ventosa
,
L. D.
Cioccio
,
H.
Moriceau
,
F.
Grossi
,
M.
Rivoire
,
P.
Leduc
, and
L.
Clavelier
,
Microelectron. Eng.
87
,
477
(
2010
).
20.
T.
Fukushima
,
E.
Iwata
,
Y.
Ohara
,
M.
Murugesan
,
J.
Bea
,
K.
Lee
,
T.
Tanaka
, and
M.
Koyanagi
, “Multichip self-assembly technology for advanced die-to-wafer 3-D integration to precisely align known good dies in batch processing,” IEEE Trans. Compon., Packag., Manuf. Technol.
1
, 1873 (2011).
21.
L.
Sanchez
et al. , “Chip to wafer direct bonding technologies for high density 3D integration,” Proceedings—Electronic Components and Technology Conference, San Diego, CA, 29 May–1 June 2012 (IEEE, Piscataway, NJ, 2012), pp. 1960–1964.
22.
G.
Arutinov
,
E. C. P.
Smits
,
M.
Mastrangeli
,
G. V.
Heck
,
J. V. D.
Brand
,
H. F. M.
Schoo
, and
A.
Dietzel
,
J. Micromech. Microeng.
22
,
115022
(
2012
).
23.
B.
Chang
,
Q.
Zhou
,
Z.
Wu
,
Z.
Liu
,
R. H. A.
Ras
, and
K.
Hjort
,
Micromachines
7
,
41
(
2016
).
24.
B.
Chang
,
Z.
Zhu
,
M.
Koverola
, and
Q.
Zhou
,
Micromachines
8
,
361
(
2017
).
25.
P.
Lambert
,
M.
Mastrangeli
,
J.-B.
Valsamis
, and
G.
Degrez
,
Microfluid. Nanofluid.
9
,
797
(
2010
).
26.
K.
Böhringer
,
U.
Srinivasan
, and
R.
Howe
, “Modeling of capillary forces and binding sites for fluidic self-assembly,” Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090), Interlaken, Switzerland, 25 January 2001 (IEEE, New York, 2001), pp. 369–374, ISSN: 1084-6999.
27.
P.
Lambert
,
A.
Chau
,
A.
Delchambre
, and
S.
Régnier
,
Langmuir
24
,
3157
(
2008
).
28.
P.
Lambert
and
A.
Delchambre
,
Langmuir
21
,
9537
(
2005
).
29.
M.
Mastrangeli
,
Adv. Mater.
27
,
4254
(
2015
).
30.
M.
Mastrangeli
,
G.
Arutinov
,
E. C. P.
Smits
, and
P.
Lambert
,
Microfluid. Nanofluid.
18
,
695
(
2015
).
31.
M.
Mastrangeli
,
Q.
Zhou
,
V.
Sariola
, and
P.
Lambert
,
Soft Matter
13
,
304
(
2017
).
32.
C. G.
Tsai
,
C. M.
Hsieh
, and
J. A.
Yeh
,
Sens. Actuators A-Phys.
139
,
343
(
2007
).
33.
J.
Berthier
,
K.
Brakke
,
F.
Grossi
,
L.
Sanchez
, and
L.
Di Cioccio
,
J. Appl. Phys.
108
,
054905
(
2010
).
34.
J.
Berthier
,
S.
Mermoz
,
K.
Brakke
,
L.
Sanchez
,
C.
Fretigny
, and
L. D.
Cioccio
,
Microfluid. Nanofluid.
14
,
845
(
2013
).
35.
S. B.
Shetye
,
I.
Eskinazi
, and
D. P.
Arnold
,
J. Microelectromech. Syst.
19
,
599
(
2010
).
36.
H.-P.
Park
and
Y.-H.
Kim
,
Electron. Lett.
53
,
810
(
2017
).
37.
G.
Arutinov
,
M.
Mastrangeli
,
E. C. P.
Smits
,
G.
van Heck
,
J. M. J.
den Toonder
, and
A.
Dietzel
,
J. Microelectromech. Syst.
24
,
126
(
2015
).
38.
B. R.
Martin
,
D. C.
Furnange
,
T. N.
Jackson
,
T. E.
Mallouk
, and
T. S.
Mayer
,
Adv. Funct. Mater.
11
,
381
(
2001
).
39.
F.
Kurz
,
T.
Plach
,
J.
Suss
,
T.
Wagenleitner
,
D.
Zinner
,
B.
Rebhan
, and
V.
Dragoi
,
ECS Trans.
75
,
345
(
2016
).
40.
V.
Dragoi
,
J.
Burggraf
,
F.
Kurz
, and
B.
Rebhan
, “3D integration by wafer-level aligned wafer bonding,” Proceedings of the International Semiconductor Conference, CAS, Sinaiah, Romania, 12-14 October 2015 (IEEE, Piscataway, NJ, 2015), Vol. 2015, pp. 185–188.
41.
C.
Flotgen
,
N.
Razek
,
V.
Dragoi
, and
M.
Wimplinger
, “Conductive semiconductor interfaces fabricated by room temperature covalent wafer bonding,” ECS Trans.
75
, 45 (2016).
42.
G.
Gaudin
,
G.
Riou
,
D.
Landru
,
C.
Tempesta
,
I.
Radu
,
M.
Sadaka
,
K.
Winstel
,
E.
Kinser
, and
R.
Hannon
, “Low temperature direct wafer to wafer bonding for 3D integration: Direct bonding, surface preparation, wafer-to-wafer alignment,” IEEE 3D System Integration Conference 2010 (3DIC 2010), Munich, Germany, 16-18 November 2010 (IEEE, Piscataway, NJ, 2010).
43.
M. A.
Hallen
and
H. D.
Hallen
,
J. Phys. Chem. C
112
,
2086
(
2008
).
44.
A.
Emanuel
,
E. M.
Walker
, and
H. D.
Hallen
,
Microfluid. Nanofluid.
24
,
49
(
2020
).
45.
R. E.
Miller
,
W. H.
Mallison
,
A. W.
Kleinsasser
,
K. A.
Delin
, and
E. M.
Macedo
,
Appl. Phys. Lett.
63
,
1423
(
1993
).
46.
L.
Netzer
and
J.
Sagiv
,
J. Am. Chem. Soc.
105
,
674
(
1983
).
47.
A. B. D.
Cassie
and
S.
Baxter
,
Trans. Faraday Soc.
40
,
546
(
1944
).
49.
G.
Vazquez
,
E.
Alvarez
, and
J. M.
Navaza
,
J. Chem. Eng. Data
40
,
611
(
1995
).
50.
See the supplementary material at https://www.scitation.org/doi/suppl/10.1116/6.0002518 for two supplementary figures, S1 and S2, that further enhance the Methods section.

Supplementary Material

You do not currently have access to this content.