The wide bandgap semiconductors SiC and GaN are commercialized for power electronics and for visible to UV light-emitting diodes in the case of the GaN/InGaN/AlGaN materials system. For power electronics applications, SiC MOSFETs (metal–oxide–semiconductor field effect transistors) and rectifiers and GaN/AlGaN HEMTs and vertical rectifiers provide more efficient switching at high-power levels than do Si devices and are now being used in electric vehicles and their charging infrastructure. These devices also have applications in more electric aircraft and space missions where high temperatures and extreme environments are involved. In this review, their inherent radiation hardness, defined as the tolerance to total doses, is compared to Si devices. This is higher for the wide bandgap semiconductors, due in part to their larger threshold energies for creating defects (atomic bond strength) and more importantly due to their high rates of defect recombination. However, it is now increasingly recognized that heavy-ion-induced catastrophic single-event burnout in SiC and GaN power devices commonly occurs at voltages ∼50% of the rated values. The onset of ion-induced leakage occurs above critical power dissipation within the epitaxial regions at high linear energy transfer rates and high applied biases. The amount of power dissipated along the ion track determines the extent of the leakage current degradation. The net result is the carriers produced along the ion track undergo impact ionization and thermal runaway. Light-emitting devices do not suffer from this mechanism since they are forward-biased. Strain has also recently been identified as a parameter that affects radiation susceptibility of the wide bandgap devices.

1.
R. J.
Kaplar
,
J.
Neely
,
D.
Huber
, and
L.
Rashkin
,
IEEE Power Electron. Mag.
4
,
36
(
2017
).
2.
S. J.
Pearton
et al,
ECS J. Solid State Sci. Technol.
10
,
055008
(
2021
).
3.
M.
Tadjer
,
J.
Lyons
,
J.
Nepal
,
J.
Freitas
,
A.
Koehler
, and
G.
Foster
,
ECS J. Solid State Sci. Technol.
8
,
Q3187
(
2019
).
4.
G. L.
Harris
,
Properties of Silicon Carbide
(
IEE INSPEC
,
London
,
1995
).
5.
Y.
Goldberg
,
M. E.
Levinshtein
, and
S. L.
Rumyantsev
, in
Properties of Advanced Semiconductor Materials
, edited by
M. E.
Levinshtein
,
S. L.
Rumyantsev
, and
M. S.
Shur
(
John Wiley
,
New York
,
2001
).
6.
M.
Bass
,
G.
Li
, and
E.
Van Stryland
,
Handbook of Optics
,
3rd ed.
(
Optical Society of America
,
New York
,
2010
), Vol. IV.
7.
J. F.
Shakelfold
and
W.
Alexander
,
CRC Materials Science and Engineering Handbook
,
3rd ed.
(
CRC
, Boca Raton, FL,
2000
).
8.
J.
Holmes
,
A. M.
Francis
,
I.
Getreu
,
M.
Barlow
,
A.
Abbasi
, and
H. A.
Mantooth
,
J. Microelectron. Electron. Packag.
13
,
143
(
2016
).
9.
C.
Wilson
,
C.-M.
Zetterling
, and
W. T.
Pike
, “Venus long-life surface package (VL2SP),” (2016); see https://arxiv.org/abs/1611.03365.
10.
A.
Rahman
et al,
IEEE J. Emerg. Sel. Top. Power Electron.
4
,
935
(
2016
).
11.
P. G.
Neudeck
,
L.
Chen
,
R. D.
Meredith
,
D.
Lukco
,
D. J.
Spry
,
L. M.
Nakley
, and
G. W.
Hunter
,
IEEE J. Electron Devices Soc.
7
,
100
(
2019
).
12.
W. F.
Koehl
,
B. B.
Buckley
,
F. J.
Heremans
,
G.
Calusine
, and
D. D.
Awschalom
,
Nature
479
,
84
(
2011
).
13.
S. J.
Pearton
,
F.
Ren
,
E.
Patrick
,
M. E.
Law
, and
A. Y.
Polyakov
,
ECS J. Solid State Sci. Technol.
5
,
Q35
(
2016
).
14.
Daniel M.
Fleetwood
,
En Xia
Zhan
,
Ronald D.
Schrimpf
, and
Sokrates T.
Pantelides
,
IEEE Trans. Nucl. Sci.
69
,
1105
(
2022
).
15.
B. C.
Letson
,
S.
Barke
,
P.
Wass
,
G.
Mueller
,
F.
Ren
,
S. J.
Pearton
, and
J. W.
Conklin
,
J. Vac. Sci. Technol. A
41
,
013202
(
2023
).
16.
S. J.
Pearton
,
Aman
Haque
,
Ani
Khachatrian
,
Adrian
Ildefonso
,
Leonid
Chernyak
, and
Fan
Ren
,
ECS J. Solid State Sci. Technol.
10
,
075004
(
2021
).
17.
S. S.
Suvanam
,
S.-I.
Kuroki
,
L.
Lanni
,
R.
Hadayati
,
T.
Ohshima
,
T.
Makino
,
A.
Hallén
, and
C. M.
Zetterling
,
IEEE Trans. Nucl. Sci.
64
,
852
(
2017
).
18.
C.-M.
Zetterling
et al,
Semicond. Sci. Technol.
32
,
034002
(
2017
).
19.
M.
Ekström
,
B. G.
Malm
, and
C.-M.
Zetterling
,
IEEE Electron Device Lett.
40
,
670
(
2019
).
20.
A.
Mantooth
,
C.-M.
Zetterling
, and
A.
Rusu
,
IEEE Spectr.
58
,
24
(
2021
).
21.
M.
Asiatici
,
A. C.
Fischer
,
H.
Rödjegård
,
S.
Haasl
,
G.
Stemme
, and
F.
Niklaus
,
Sens. Actuators, A
238
,
361
(
2016
).
23.
Kai
Nordlund
et al,
J. Nucl. Mater.
512
,
450
(
2018
).
24.
J.
Nord
,
K.
Nordlund
, and
J.
Keinonen
,
Phys. Rev. B
68
,
184104
(
2003
).
25.
Yanwen
Zhang
and
William J.
Weber
,
Appl. Phys. Rev.
7
,
041307
(
2020
).
26.
W. J.
Weber
,
D. M.
Duffy
,
L.
Thomé
, and
Y.
Zhang
,
Curr. Opin. Solid State Mater. Sci.
19
,
1
(
2015
).
27.
Y.
Zhang
et al,
Curr. Opin. Solid State Mater. Sci.
21
,
285
(
2017
).
28.
W. J.
Weber
and
Y.
Zhang
,
Curr. Opin. Solid State Mater. Sci.
23
,
100757
(
2019
).
29.
S.
Agarwal
,
Q.
Chen
,
T.
Koyanagi
,
Y.
Zhao
,
S. J.
Zinkle
, and
W. J.
Weber
,
J. Nucl. Mater.
526
,
151778
(
2019
).
30.
Lauren
Nuckols
,
Miguel L.
Crespillo
,
Chen
Xu
,
Eva
Zarkadoula
,
Yanwen
Zhang
, and
William J.
Weber
,
Acta Mater.
199
,
96
(
2020
).
31.
K.
Nordlund
,
M.
Ghaly
,
R. S.
Averback
,
M.
Caturla
,
T.
Diaz
de la
Rubia
, and
J.
Tarus
,
Phys. Rev. B
57
,
7556
(
1998
).
32.
J. W.
Corbett
and
G. D.
Watkins
,
Phys. Rev.
138
,
A555
(
1965
).
33.
J. J.
Loferski
and
P.
Rappaport
,
J. Appl. Phys.
30
,
1296
(
1959
).
34.
R. E.
Stoller
,
M. B.
Toloczko
,
G. S.
Was
,
A. G.
Certain
,
S.
Dwaraknath
, and
F. A.
Garner
,
Nucl. Instrum. Methods Phys. Res., Sect. B
310
,
75
(
2013
).
35.
M. C.
Sequeira
,
F.
Djurabekova
,
K.
Nordlund
,
J. G.
Mattei
,
I.
Monnet
,
C.
Grygiel
,
E.
Alves
, and
K.
Lorenz
,
Small
18
,
2270265
(
2022
).
36.
M.
Sall
,
I.
Monnet
,
F.
Moisy
,
C.
Grygiel
,
S.
Jublot-Leclerc
,
S.
Della–Negra
, M. Toulemonde, and E. Balanzat,
J. Mater. Sci.
50
,
5214
(
2015
).
37.
S. O.
Kucheyev
,
H.
Timmers
,
J.
Zou
,
J. S.
Williams
,
C.
Jagadish
, and
G.
Li
,
J. Appl. Phys.
95
,
5360
(
2004
).
38.
J.
Nord
,
J. K.
Nordlund
,
J.
Keinonen
, and
K.
Albe
,
Nucl. Instrum. Methods Phys. Res., Sect. B
202
,
93
(
2003
).
39.
40.
S. A.
Vitusevich
et al.,
Phys. Status Solidi A
195
,
101
(
2003
).
41.
E. A.
Wendler
,
E.
Kamarou
,
K.
Alves
,
K.
Gärtner
, and
W.
Wesch
,
Nucl. Instrum. Methods Phys. Res., Sect. B
206
,
1028
(
2003
).
42.
E. A.
Wendler
,
W.
Wesch
,
E.
Alves
, and
A.
Kamarou
,
Nucl. Instrum. Methods Phys. Res., Sect. B
218
,
36
(
2004
).
43.
W. K.
Tobiska
et al,
Space Weather
14
,
1053
(
2016
).
44.
P. P.
Beck
,
P.
Ambrosi
,
U.
Schrewe
, and
K.
O’Brien
, ACREM (Aircrew Radiation Exposure Monitoring), Final report of European Commission Contract No. F14P-CT960047, OEFZS, Rep. G-0008, 1999.
45.
P.
Beck
,
M.
Latocha
,
S.
Rollet
, and
G.
Stehno
,
Adv. Space Res.
36
,
1627
(
2005
).
46.
P.
Beck
,
C.
Dyer
,
N.
Fuller
,
A.
Hands
,
M.
Latocha
,
S.
Rollet
, and
F.
Spurny
,
Radiat. Prot. Dosim.
136
,
297
(
2009
).
47.
O.
Burda
,
T.
Sato
, and
F.
Wissmann
,
J. Radiol. Prot.
33
,
339
(
2013
).
48.
P.
Cannon
,
Extreme Space Weather: Impacts on Engineered Systems and Infrastructure
(
Royal Academy of Engineering
,
London
,
2013
).
49.
C.
Dyer
et al,
IEEE Trans. Nucl. Sci.
56
,
3415
(
2009
).
50.
C. S.
Dyer
,
A. J.
Sims
,
J.
Farren
, and
J.
Stephen
,
IEEE Trans. Nucl. Sci.
37
,
1929
(
1990
).
51.
E. B.
Yakimov
et al,
Appl. Phys. Lett.
118
,
202106
(
2021
).
52.
M. V. S.
Chandrashekhar
,
C. I.
Thomas
, and
M. G.
Spencer
,
Appl. Phys. Lett.
89
,
042113
(
2006
).
53.
A. A.
Lebedev
,
A. M.
Ivanov
, and
N. B.
Strokan
,
Semiconductors
38
,
125
(
2004
).
54.
C. A.
Klein
,
J. Appl. Phys.
39
,
2029
(
1968
).
55.
T.
Kobayashi
,
Appl. Phys. Lett.
21
,
150
(
1972
).
56.
R. C.
Alig
and
S.
Bloom
,
Phys. Rev. Lett.
35
,
1522
(
1975
).
57.
S.
Butera
,
G.
Lioliou
,
A. B.
Krysa
, and
A. M.
Barnett
,
Nucl. Instrum. Methods Phys. Res., Sect. A
879
,
64
(
2018
).
58.
Masahiro
Horita
,
Tetsuo
Narita
,
Tetsu
Kachi
, and
Jun
Suda
,
Appl. Phys. Lett.
118
,
012106
(
2021
).
59.
J. S.
Williams
,
Mater. Sci. Eng. A
253
,
8
(
1998
).
60.
J. W.
Steeds
,
Nucl. Instrum. Methods Phys. Res., Sect. B
269
,
1702
(
2011
).
61.
G. A.
Umana-Membreno
,
J. M.
Dell
,
T. P.
Hessler
,
B. D.
Nener
,
G.
Parish
,
L.
Faraone
, and
U. K.
Mishra
,
Appl. Phys. Lett.
80
,
4354
(
2002
).
62.
V. V.
Emtsev
et al,
Semicond. Sci. Technol.
15
,
73
(
2000
).
63.
Chandan
Sharma
,
Rajendra
Singh
,
Der-Sheng
Chao
, and
Tian-Li
Wu
,
Semicond. Sci. Technol.
34
,
065024
(
2019
).
64.
Gu
Wenping
,
Chen
Chi
,
Duan
Huantao
,
Hao
Yue
et al.,
J. Semiconductors
30
,
044002
(
2009
).
65.
O.
Aktas
,
A.
Kulieva
,
V.
Kumara
,
R.
Schwindt
,
S.
Toshkov
,
D.
Costescu
,
J.
Stubbin
, and
I.
Adesida
,
Solid-State Electron.
48
,
471
(
2004
).
66.
C.
Schwarz
et al,
Appl. Phys. Lett.
102
,
062102
(
2013
).
67.
In Hwan
Lee
et al,
Appl. Phys. Lett.
110
,
112102
(
2017
).
68.
Shihyun
Ahn
,
ByungJae
Kim
,
Yi Hsuan
Lin
,
Fan
Ren
,
S. J.
Pearton
,
Gwangseok
Yang
,
Jihyun
Kim
, and
Ivan
Kravchenko
,
J. Vac. Sci. Technol. B
34
,
051202
(
2016
).
69.
B. J.
Kim
,
S.
Ahn
,
Fan
Ren
,
S. J.
Pearton
,
G.
Yang
, and
J.
Kim
,
J. Vac. Sci. Technol. B
34
,
041231
(
2016
).
70.
Ya Shi
Hwang
et al,
J. Vac. Sci. Technol. B
31
,
022206
(
2013
).
71.
L.
Liu
,
C. V.
Cuervo
,
Y.
Xi
,
F.
Ren
,
S. J.
Pearton
,
H. Y.
Kim
,
J.
Kim
, and
I. I.
Kravchenko
,
J. Vac. Sci. Technol. B
31
,
042202
(
2013
).
72.
A. Y.
Polyakov
,
S. J.
Pearton
,
P.
Frenzer
,
F.
Ren
,
L.
Liu
, and
J.
Kim
,
J. Mater. Chem. C
1
,
877
(
2013
).
73.
M. P.
King
et al,
IEEE Trans. Nucl. Sci.
62
,
2912
(
2015
).
74.
L.
Lv
et al,
IEEE Trans. Nucl. Sci.
64
,
643
(
2017
).
75.
K. H.
Chow
,
G. D.
Watkins
,
A.
Usui
, and
M.
Mizuta
,
Phys. Rev. Lett.
85
,
2761
(
2000
).
76.
Yun
Tang
,
Lei
Wang
,
Xiaowu
Cai
,
Peng
Lu
, and
Bo
Li
,
Appl. Phys. Lett.
122
,
022101
(
2023
).
77.
S. J.
Pearton
,
R.
Deist
,
F.
Ren
,
L.
Liu
,
A. Y.
Polyakov
, and
J.
Kim
,
J. Vac. Sci. Technol. A
31
,
050801
(
2013
).
78.
H. Y.
Kim
,
J.
Kim
,
L.
Liu
,
C. F.
Lo
,
F.
Ren
, and
S. J.
Pearton
,
J. Vac. Sci. Technol. B
31
,
051210
(
2013
).
79.
Y. L.
Xi
et al,
J. Vac. Sci. Technol. B
32
,
012201
(
2014
).
80.
X.
Hu
et al,
IEEE Trans. Nucl. Sci.
50
,
1791
(
2003
).
81.
J.
Kim
,
F.
Ren
,
D.
Schoenfeld
,
S. J.
Pearton
,
A. G.
Baca
, and
R. D.
Briggs
,
J. Semicond. Technol. Sci.
4
,
124
(
2004
).
82.
R.
Khanna
,
K. K.
Allums
,
C. R.
Abernathy
,
S. J.
Pearton
,
J.
Kim
,
F.
Ren
,
R.
Dwivedi
,
T. N.
Fogarty
, and
R.
Wilkins
,
Appl. Phys. Lett.
85
,
3131
(
2004
).
83.
A. Y.
Polyakov
,
N. B.
Smirnov
,
A. V.
Govorkov
,
A. V.
Markov
,
S. J.
Pearton
,
N. G.
Kolin
,
D. I.
Merkurisov
, and
V. M.
Boiko
,
J. Appl. Phys.
98
,
033529
(
2005
).
84.
R.
Khanna
,
S. Y.
Han
,
S. J.
Pearton
,
D.
Schoenfeld
,
W. V.
Schoenfeld
, and
F.
Ren
,
Appl. Phys. Lett.
87
,
212107
(
2005
).
85.
A.
Kalavagunta
,
A.
Touboul
,
L.
Shen
,
R. D.
Schrimpf
,
R. A.
Reed
,
D. M.
Fleetwood
,
R. K.
Jain
, and
U. K.
Mishra
,
IEEE Trans. Nucl. Sci.
55
,
2106
(
2008
).
86.
A. Y.
Polyakov
,
In-Hwan
Lee
,
N. B.
Smirnov
,
A. V.
Govorkov
,
E. A.
Kozhukhova
,
N. G.
Kolin
,
A. V.
Korulin
,
V. M.
Boiko
, and
S. J.
Pearton
,
J. Appl. Phys.
109
,
123703
(
2011
).
87.
Y.-H.
Hwang
et al,
J. Vac. Sci. Technol. B
32
,
031203
(
2014
).
88.
In-Hwan
Lee
,
A. Y.
Polyakov
,
N. B.
Smirnov
,
A. V.
Govorkov
,
E. A.
Kozhukhova
,
N. G.
Kolin
,
V. M.
Boiko
,
A. V.
Korulin
, and
S. J.
Pearton
,
J. Vac. Sci. Technol. B
29
,
041201
(
2011
).
89.
A. P.
Karmarkar
,
B.
Jun
,
D. M.
Fleetwood
,
R. D.
Schrimpf
,
R. A.
Weller
,
B. D.
White
,
L. J.
Brillson
, and
U. K.
Mishra
,
IEEE Trans. Nucl. Sci.
51
,
3801
(
2004
).
90.
Xinwen
Hu
et al.,
IEEE Trans. Nucl. Sci.
49
, 3213 (2002).
91.
Jian-Sian
Li
,
Chao-Ching
Chiang
,
Xinya
Xia
,
Sergei
Stepanoff
,
Aman
Haque
,
Douglas E.
Wolfe
,
Fan
Ren
, and
S. J.
Pearton
,
J. Appl. Phys.
133
,
015702
(
2023
).
92.
A.
Yadav
,
E.
Flitsiyan
,
L.
Chernyak
,
Y. H.
Hwang
,
Y. L.
Hsieh
,
L.
Lei
,
F.
Ren
,
S. J.
Pearton
, and
I.
Lubomirsky
,
Radiat. Eff. Defects Solids
170
,
377
(
2015
).
93.
Chaker
Fares
,
Fan
Ren
,
Stephen J.
Pearton
,
Gwangseok
Yang
,
Jihyun
Kim
,
Chien-Fong
Lo
, and
J. Wayne
Johnson
,
J. Vac. Sci. Technol. B
36
,
041203
(
2018
).
94.
F.
Danesin
,
F.
Zanon
,
S.
Gerardin
,
F.
Rampazzo
,
G.
Meneghesso
,
E.
Zanoni
, and
A.
Paccagnella
,
Microelectron. Reliab.
46
,
1750
(
2006
).
95.
Keito
Aoshima
,
Masahiro
Horita
, and
Jun
Suda
,
Appl. Phys. Lett.
122
,
012106
(
2023
).
96.
Edmund G.
Seebauer
and
Meredith C.
Kratzer
,
Mater. Sci. Eng. R. Rep.
55
,
57
(
2006
).
97.
D.
Stievenard
,
Mater. Sci. Eng. B
71
,
120
(
2000
).
98.
J.
Bourgoin
and
J. W.
Corbett
,
Phys. Lett. A
38A
,
135
(
1993
).
99.
S. J.
Pearton
,
J. C.
Zolper
,
R. J.
Shul
, and
F.
Ren
,
J. Appl. Phys.
86
,
1
(
1999
).
100.
Matteo
Meneghini
et al,
J. Appl. Phys.
130
,
181101
(
2021
).
101.
A. Y.
Polyakov
et al,
J. Appl. Phys.
130
,
035701
(
2021
).
102.
A. Y.
Polyakov
et al,
J. Appl. Phys.
130
,
185701
(
2021
).
103.
M. A. J.
Rasel
,
S.
Stepanoff
,
A.
Haque
,
D. E.
Wolfe
,
F.
Ren
, and
S.
Pearton
,
Phys. Status Solidi RRL
16
,
2200171
(
2022
).
104.
Md Abu Jafar
Rasel
,
Sergei P.
Stepanoff
,
Maxwell
Wetherington
,
Aman
Haque
,
Douglas E.
Wolfe
,
Fan
Ren
, and
Stephen
Pearton
,
Appl. Phys. Lett.
120
,
124101
(
2022
).
105.
Nahid Sultan
Al-Mamun
,
Sergei
Stepanoff
,
Aman
Haque
,
Douglas E.
Wolfe
,
Fan
Ren
, and
Stephen
Pearton
,
Appl. Phys. Lett.
121
,
233502
(
2022
).
106.
Md Abu
Jafar Rasel
,
Sergei
Stepanoff
,
Aman
Haque
,
Douglas E.
Wolfe
,
Fan
Ren
, and
Stephen
Pearton
,
ECS J. Solid State Sci. Technol.
11
,
075002
(
2022
).
107.
E.
Mizuta
,
S.
Kuboyama
,
Y.
Nakada
,
A.
Takeyama
,
T.
Ohshima
,
Y.
Iwata
, and
K.
Suzuki
,
IEEE Trans. Nucl. Sci.
65
,
1956
(
2018
).
108.
B. D.
Weaver
,
T. J.
Anderson
,
A. D.
Koehler
,
J. D.
Greenlee
,
J. K.
Hite
,
D. I.
Shahin
,
F. J.
Kub
, and
K. D.
Hobart
,
ECS J. Solid State Sci. Technol.
5
,
Q208
(
2016
).
109.
M.
Zafrani
,
J.
Brandt
,
R.
Strittmatter
,
B.
Sun
,
S.
Zhang
, and
A.
Lidow
, 2022 IEEE Radiation Effects Data Workshop (REDW) (in Conjunction with 2022 NSREC), Provo, UT, 18–22 July 2022 (IEEE, 2022), pp. 1–4.
110.
S. A.
Vitusevich
,
A. M.
Kurakin
,
R. V.
Konakova
,
A. E.
Belyaev
, and
N.
Klein
,
Appl. Surf. Sci.
255
,
784
(
2008
).
111.
Alexander Y.
Polyakov
et al.,
J. Vac. Sci. Technol. B
30
,
041209
(
2012
).
112.
S. B.
Witmer
et al.,
Mater. Sci. Eng., B
20
,
280
(
1993
).
113.
C.
Sharma
,
A. K.
Visvkarma
,
R.
Laishram
,
A.
Malik
,
K.
Narang
,
S.
Vinayak
, and
R.
Singh
,
Semicond. Sci. Technol.
34
,
065024
(
2019
).
114.
M. P.
Khanal
,
B.
Ozden
,
K.
Kim
,
S.
Uprety
,
V.
Mirkhani
,
K.
Yapabandara
,
A. C.
Ahyi
, and
M.
Park
,
J. Vac. Sci. Technol. B
35
,
03D107
(
2017
).
115.
J.
Lee
,
E.
Flitsiyan
,
L.
Chernyak
,
J.
Salzman
, and
B.
Meyler
,
ECS J. Solid State Sci. Technol.
6
,
S3063
(
2017
).
116.
B.
Luo
et al,
Appl. Phys. Lett.
80
,
604
(
2002
).
117.
L.
Scheick
,
IEEE Trans. Nucl. Sci.
61
,
2881
(
2014
).
118.
Przemysław
Jozwik
et al,
Phys. Chem. Chem. Phys.
24
,
25773
(
2022
).
119.
F.
Moisy
,
M.
Sall
,
C.
Grygiel
,
A.
Ribet
,
E.
Balanzat
, and
I.
Monnet
,
Nucl. Instrum. Methods Phys. Res., Sect. B
431
,
12
(
2018
).
120.
J.
Gou
,
L. Q.
Zhang
,
C. H.
Zhang
,
Y.
Song
,
Y. T.
Yang
,
J. J.
Li
,
Y. C.
Meng
, and
H. X.
Li
,
Nucl. Instrum. Methods Phys. Res., Sect. B
307
,
89
(
2013
).
121.
L. M.
Zhang
,
W.
Jiang
,
R. C.
Fadanelli
,
W. S.
Ai
,
J. X.
Peng
,
T. S.
Wang
, and
C. H.
Zhang
,
Nucl. Instrum. Methods Phys. Res., Sect. B
388
,
30
(
2016
).
122.
Lu
Liu
et al,
J. Vac. Sci. Technol. B
31
,
022201
(
2013
).
123.
A. P.
Karmarkar
,
B. D.
White
,
D.
Buttari
,
D. M.
Fleetwood
,
R. D.
Schrimpf
,
R. A.
Weller
,
L. J.
Brillson
, and
U. K.
Mishra
,
IEEE Trans. Nucl. Sci.
52
,
2239
(
2005
).
124.
B. D.
White
,
M.
Bataiev
,
S. H.
Goss
,
X.
Hu
,
A.
Karmarkar
,
D. M.
Fleetwood
,
R. D.
Schrimpf
,
W. J.
Schaff
, and
L. J.
Brillson
,
IEEE Trans. Nucl. Sci.
50
,
1934
(
2003
).
125.
H. Y.
Kim
,
T.
Anderson
,
M. A.
Mastro
,
J. A.
Freitas
, Jr
,
S. W.
Jang
,
J.
Hite
,
C. R.
Eddy
, Jr
, and
J. Y.
Kim
,
J. Cryst. Growth
326
,
62
(
2011
).
126.
H. Y.
Kim
,
J. H.
Kim
,
S. P.
Yun
,
K. R.
Kim
,
T. J.
Anderson
,
F.
Ren
, and
S. J.
Pearton
,
J. Electrochem. Soc.
155
,
H513
(
2008
).
127.
B.
Luo
et al.,
Appl. Phys. Lett.
82
,
1428
(
2003
).
128.
G.
Sonia
et al,
Solid-State Electron.
52
,
1011
(
2008
).
129.
Byung-Jae
Kim
,
Shihyun
Ahn
,
Fan
Ren
,
Stephen J.
Pearton
,
Gwangseok
Yang
, and
Jihyun
Kim
,
J. Vac. Sci. Technol. B
34
,
041231
(
2016
).
130.
Shihyun
Ahn
,
Byung-Jae
Kim
,
Yi-Hsuan
Lin
,
Fan
Ren
,
Stephen J.
Pearton
,
Gwangseok
Yang
,
Jihyun
Kim
, and
Ivan I.
Kravchenko
,
J. Vac. Sci. Technol. B
34
,
051202
(
2016
).
131.
C. H.
Li
,
H. L.
Lu
,
Y. M.
Zhang
,
M.
Liu
, and
X. H.
Zhao
,
IEEE Trans. Nucl. Sci.
62
,
1336
(
2015
).
132.
S. J.
Cai
et al,
IEEE Trans. Electron Devices
47
,
304
(
2000
).
133.
X. W.
Hu
et al,
IEEE Trans. Nucl. Sci.
50
,
1791
(
2003
).
134.
Amanda
Portoff
,
Michael
Stavola
,
W. Beall
Fowler
,
Stephen J.
Pearton
, and
Evan R.
Glaser
,
Appl. Phys. Lett.
122
,
062101
(
2023
).
135.
F. C.
Hila
et al,
Radiat. Phys. Chem.
182
,
109331
(
2021
).
136.
J.
Troska
,
S.
Detraz
,
S. S.
El Nasr-Storey
,
P.
Stejskal
,
C.
Sigaud
,
C.
Soos
, and
F.
Vasey
,
IEEE Trans. Nucl. Sci.
58
,
3103
(
2011
).
137.
A. H.
Johnston
,
T. F.
Miyahira
, and
B. G.
Rax
,
IEEE Trans. Nucl. Sci.
48
,
1764
(
2001
).
138.
K. A.
Gill
,
G.
Cervelli
,
R.
Grabit
,
F. B.
Jensen
, and
F.
Vasey
,
Proc. SPIE
4134
,
176
.
139.
A. H.
Johnston
and
T. F.
Miyahira
,
IEEE Trans. Nucl. Sci.
51
,
3564
(
2004
).
140.
A. H.
Johnston
,
IEEE Trans. Nucl. Sci.
50
,
689
(
2003
).
141.
Q.
Du
,
Opt. Mater. Express
13
,
403
(
2023
).
142.
M.
Osiński
,
P.
Perlin
,
H.
Sch€one
,
A. H.
Paxton
, and
E. W.
Taylor
,
Electron. Lett.
33
,
1252
(
1997
).
143.
F.
Gaudreau
,
C.
Carlone
,
A.
Houdayer
, and
S. M.
Khanna
,
IEEE Trans. Nucl. Sci.
48
,
1778
(
2001
).
144.
S. M.
Khanna
et al,
IEEE Trans. Nucl. Sci.
51
,
2729
(
2004
).
145.
Byung-Jae
Kim
,
Ya-Hsi
Hwang
,
Shihyun
Ahn
,
Fan
Ren
,
Stephen J.
Pearton
,
Jihyun
Kim
, and
Tae Sung
Jang
,
J. Vac. Sci. Technol. B
33
,
051215
(
2015
).
146.
O. H.
Pakarinen
,
F.
Djurabekova
,
K.
Nordlund
,
P.
Kluth
, and
M. C.
Ridgway
,
Nucl. Instrum. Methods Phys. Res., Sect. B
267
,
1456
(
2009
).
147.
M.
Zerarka
,
P.
Austin
,
A.
Bensoussan
,
F.
Morancho
, and
A.
Durier
,
IEEE Trans. Nucl. Sci.
64
,
2242
(
2017
).
148.
C.
Abbate
,
Microelectron. Reliab.
55
,
1496
(
2015
).
149.
Z.
Islam
,
Angela L.
Paoletta
,
Anthony M.
Monterrosa
,
Jennifer D.
Schuler
,
Timothy J.
Rupert
,
Khalid
Hattar
,
Nicholas
Glavine
, and
Aman
Haque
,
Microelectron. Reliab.
102
,
113493
(
2019
).
150.
A.
Luchechko
,
V.
Vasyltsiv
,
L.
Kostyk
,
O.
Tsvetkova
, and
A. I.
Popov
,
Nucl. Instrum. Methods Phys. Res., Sect. B
441
,
12
(
2019
).
151.
S.
Kuboyama
,
C.
Kamezawa
,
N.
Ikeda
,
T.
Hirao
, and
H.
Ohyama
,
IEEE Trans. Nucl. Sci.
53
,
3343
(
2006
).
152.
S.
Kuboyama
,
C.
Kamezawa
,
Y.
Satoh
,
T.
Hirao
, and
H.
Ohyama
,
IEEE Trans. Nucl. Sci.
54
,
2379
(
2007
).
153.
S.
Kuboyama
,
E.
Mizuta
,
Y.
Nakada
,
H.
Shindou
,
A.
Michez
,
J.
Boch
,
F.
Saigne
, and
A.
Touboul
,
IEEE Trans. Nucl. Sci.
66
,
1688
(
2019
).
154.
T.
Shoji
,
S.
Nishida
,
K.
Hamada
, and
H.
Tadano
,
Jpn. J. Appl. Phys.
53
,
04EP03
(
2014
).
155.
H.
Asai
,
K.
Sugimoto
,
I.
Nashiyama
,
Y.
Iide
,
K.
Shiba
,
M.
Matsuda
, and
Y.
Miyazaki
,
IEEE Trans. Nucl. Sci.
59
,
880
(
2012
).
156.
T.
Makino
,
M.
Deki
,
N.
Iwamoto
,
S.
Onoda
,
N.
Hoshino
,
H.
Tsuchida
,
T.
Hirao
, and
T.
Ohshima
,
IEEE Trans. Nucl. Sci.
60
,
2647
(
2013
).
157.
J.-M.
Lauenstein
, “Getting SiC power devices off the ground: Design, testing, and overcoming radiation threats,” Microelectronics Reliability and Qualification Working (MRQW) Meeting, El Segundo, CA, February 2018; see: https://ntrs.nasa.gov/search.jsp?R=20180006113.
158.
S. S.
Suvanam
,
L.
Lanni
,
B. G.
Malm
,
C. M.
Zetterling
, and
A.
Hallén
,
IEEE Trans. Nucl. Sci.
61
,
1772
(
2014
).
159.
M.
Shakir
,
S.
Hou
,
B. G.
Malm
,
M.
Östling
, and
C.-M.
Zetterling
,
IEEE Electron Device Lett.
39
,
1540
(
2018
).
160.
P. G.
Neudeck
,
D. J.
Spry
,
L.
Chen
,
N. F.
Prokop
, and
M. J.
Krasowski
,
IEEE Electron Device Lett.
38
,
1082
(
2017
).
161.
XinyXia
,
Nahid Sultan Al-Mamun
,
Daudi
,
Warywoba
,
Fan
Ren
,
Aman
Haque
, and
S. J.
Pearton
,
J. Vacuum Sci. Technol. A
40
,
053403
(
2022
).
162.
T.
Funaki
,
Juan Carlos
Balda
,
Jeremy
Junghans
,
Avinash S.
Kashyap
,
H.
Alan Mantooth
,
Fred
Barlow
,
Tsunenobu
Kimoto
, and
Takashi
Hikihara
,
IEEE Trans. Power Electron.
22
,
1321
(
2007
).
163.
X.
Jiang
,
K.
Kim
,
S.
Zhang
,
J.
Johnson
, and
G.
Salazar
,
Sensors
14
,
144
(
2013
).
164.
S.
Roy
et al,
IEEE Trans. Electron Devices
66
,
3764
(
2019
).
165.
P.
Hazdra
,
V.
Záhlava
, and
J.
Vobecký
,
Solid State Phenom.
205-206
,
451
(
2013
).
166.
S. K.
Dixit
,
S.
Dhar
,
J.
Rozen
,
S.
Wang
,
R. D.
Schrimpf
,
D. M.
Fleetwood
,
S. T.
Pantelides
,
J. R.
Williams
, and
L. C.
Feldman
,
IEEE Trans. Nucl. Sci.
53
,
3687
(
2006
).
167.
D. C.
Sheridan
,
G.
Chung
,
S.
Clark
, and
J. D.
Cressler
,
IEEE Trans. Nucl. Sci.
48
,
2229
(
2001
).
168.
A.
Akturk
,
J. M.
McGarrity
,
S.
Potbhare
, and
N.
Goldsman
,
IEEE Trans. Nucl. Sci.
59
,
3258
(
2012
).
169.
M.
Nawaz
,
C.
Zaring
,
S.
Onoda
,
T.
Ohshima
, and
M.
Ostling
, “
Radiation hardness assessment of high voltage 4H-SiC BJTs
,”
2009 Device Research Conference, San Francisco, CA, 22-24 June 2009
(IEEE, New York,
2009
), Vol. 6, pp.
279
280
.
170.
J. N.
Merrett
et al,
Mater. Sci. Forum
483-485
,
885
(
2005
).
171.
C.
Abbate
,
G.
Busatto
,
D.
Tedesco
,
A.
Sanseverino
,
F.
Velardi
,
J.
Wyss
,
L.
Silvestrin
,
F.
Velardi
, and
J.
Wyss
,
IEEE Trans. Electron Devices
66
,
4235
(
2019
).
172.
C.
Abbate
,
G.
Busatto
,
D.
Tedesco
,
A.
Sanseverino
,
F.
Velardi
, and
J.
Wyss
,
IEEE Trans. Electron Devices
66
,
4243
(
2019
).
173.
M.
Usman
and
A.
Hallén
,
IEEE Electron Device Lett.
32
,
1653
(
2011
).
174.
T.
Ohshima
,
H.
Itoh
, and
M.
Yoshikawa
,
J. Appl. Phys.
90
,
3038
(
2001
).
175.
S.
Onoda
,
N.
Iwamoto
,
S.
Ono
,
S.
Katakami
,
M.
Arai
,
K.
Kawano
, and
T.
Ohshima
,
IEEE Trans. Nucl. Sci.
56
,
3218
(
2009
).
176.
P.
Peng Dong
,
Xiaolan
Yan
,
Lin
Zhang
,
Shangjie
Jin
,
Fang
Dai
,
Ying
Zhang
,
Yingxin
Cui
,
Xuegong
Yu
, and
Bing
Huang
,
IEEE Trans. Nucl. Sci.
68
,
312
(
2021
).
177.
R.
Devanathan
,
W. J.
Weber
, and
F.
Gao
,
J. Appl. Phys.
90
,
2303
(
2001
).
178.
A.
Khachatrian
et al,
IEEE Trans. Nucl. Sci.
62
,
2743
(
2015
).
179.
A.
Khachatrian
et al,
IEEE Trans. Nucl. Sci.
66
,
368
(
2019
).
180.
Joel M.
Hales
et al,
IEEE Trans. Nucl. Sci.
67
,
81
(
2020
).
181.
Alexander Y.
Polyakov
et al
J. Appl. Phys.
132
,
035701
(
2022
).
182.
R. D.
Harris
,
A. J.
Frasca
, and
M. O.
Patton
,
IEEE Trans. Nucl. Sci.
52
,
2408
(
2005
).
183.
184.
D. R.
Ball
et al,
IEEE Trans. Nucl. Sci.
67
,
22
(
2020
).
185.
Arto
Javanainen
et al,
IEEE Trans. Nucl. Sci.
64
,
2031
(
2017
).
186.
A.
Javanainen
,
K. F.
Galloway
,
V.
Ferlet-Cavrois
, and
J. M.
Lauenstein
,
IEEE Trans. Device Mater. Reliab.
16
,
208
(
2016
).
187.
R. A.
Johnson
et al,
IEEE Trans. Nucl. Sci.
67
,
135
(
2020
).
188.
A. F.
Witulski
,
R.
Arslanbekov
,
A.
Raman
,
R. D.
Schrimpf
,
A. L.
Sternberg
,
K. F.
Galloway
,
Arto
Javanainen
,
D.
Grider
, and
D. J.
Lichtenwalner
,
IEEE Trans. Nucl. Sci.
65
,
256
(
2018
).
189.
Pavel
Hazdra
,
Petr
Smrkovský
,
Jan
Vobecký
, and
Andrei
Mihaila
,
IEEE Trans. Electron Devices
68
,
202
(
2021
).
190.
A.
Akturk
,
R.
Wilkins
,
K.
Gunthoti
,
S. A.
Wender
, and
N.
Goldsman
,
IEEE Trans. Nucl. Sci.
69
,
900
(
2022
).
191.
K.
Niskanen
,
A. D.
Touboul
,
R.
Coq Germanicus
,
A.
Michez
,
A.
Javanainen
,
F.
Wrobel
,
J.
Boch
,
V.
Pouget
, and
F.
Saigné
,
IEEE Trans. Nucl. Sci.
67
,
1365
(
2020
).
192.
A.
Titov
,
K.
Karabeshkin
,
A.
Struchkov
, V. Nikolaev, A. Azarov, D. Gogova, and P. Karaseov,
Vacuum
200
,
111005
(
2022
).
193.
D. R.
Ball
et al,
IEEE Trans. Nucl. Sci.
68
,
1430
(
2021
).
194.
Y.
Nakada
,
S.
Kuboyama
,
E.
Mizuta
,
A.
Takeyama
,
T.
Ohshima
, and
H.
Shindou
, in
2019 19th European Conference on Radiation and Its Effects on Components and Systems (RADECS), Montpellier, France, 16-20 September 2019
(
IEEE
,
New York
,
2019
), pp.
1
4
.
195.
N.
Ikeda
,
S.
Kuboyama
,
Y.
Satoh
, and
T.
Tamura
,
IEEE Trans. Nucl. Sci.
55
,
3388
(
2008
).
196.
T.
Shoji
,
S.
Nishida
,
K.
Hamada
, and
H.
Tadano
,
Microelectron. Reliab.
55
,
1517
(
2015
).
197.
Manato
Deki
,
Takahiro
Makino
,
Naoya
Iwamoto
,
Shinobu
Onoda
,
Kazutoshi
Kojima
,
Takuro
Tomita
, and
Takeshi
Ohshima
,
Nucl. Instrum. Methods Phys. Res., Sect. B
319
,
75
(
2014
).
198.
A.
Akturk
,
J. M.
McGarrity
,
N.
Goldsman
,
D. J.
Lichtenwalner
,
B.
Hull
,
D.
Grider
, and
R.
Wilkins
,
IEEE Trans. Nucl. Sci.
66
,
1828
(
2019
).
199.
K.
Niskanen
,
A. D.
Touboul
,
R. C.
Germanicus
,
A.
Michez
,
A.
Javanainen
,
F.
Wrobel
,
J.
Boch
,
V.
Pouget
, and
F.
Saigne
,
IEEE Trans. Nucl. Sci.
67
,
1365
(
2020
).
200.
A.
Griffoni
,
J.
Van Duivenbode
,
D.
Linten
,
E.
Simoen
,
P.
Rech
,
L.
Dilillo
,
F.
Wrobel
,
P.
Verbist
, and
G.
Groeseneken
,
IEEE Trans. Nucl. Sci.
59
,
866
(
2012
).
201.
A.
Javanainen
et al,
IEEE Trans. Nucl. Sci.
64
,
415
(
2017
).
202.
A.
Haran
,
J.
Barak
,
D.
David
,
N.
Refaeli
,
B. E.
Fischer
,
K. O.
Voss
,
G.
Du
, and
M.
Heiss
,
IEEE Trans. Nucl. Sci.
54
,
2488
(
2007
).
203.
A. F.
Witulski
,
Dennis R.
Ball
,
Kenneth F.
Galloway
,
Arto
Javanainen
,
Jean-Marie
Lauenstein
,
Andrew L.
Sternberg
, and
Ronald D.
Schrimpf
,
IEEE Trans. Nucl. Sci.
65
,
1951
(
2018
).
204.
A.
Abbate
,
G.
Busatto
,
S.
Mattiazzo
,
A.
Sanseverino
,
L.
Silvestrin
,
D.
Tedesco
, and
F.
Velardi
,
Microelectron. Reliab.
88-90
,
941
(
2018
).
205.
C.
Abbate
,
G.
Busatto
,
P.
Cova
,
N.
Delmonte
,
F.
Giuliani
,
F.
Iannuzzo
,
A.
Sanseverino
, and
F.
Velardi
,
IEEE Trans. Nucl. Sci.
62
,
202
(
2015
).
206.
A.
Akturk
,
J. M.
McGarrity
,
N.
Goldsman
,
D. J.
Lichtenwalner
,
B.
Hull
,
D.
Grider
, and
R.
Wilkins
,
IEEE Trans. Nucl. Sci.
65
,
1248
(
2018
).
207.
A. F.
Witulski
et al,
IEEE Trans. Nucl. Sci.
65
,
256
(
2018
).
208.
R. A.
Johnson
et al,
IEEE Trans. Nucl. Sci.
69
,
248
(
2022
).
209.
S.
Liu
et al,
IEEE Trans. Nucl. Sci.
59
,
1125
(
2012
).
210.
H.
Asai
,
I.
Nashiyama
,
K.
Sugimoto
,
K.
Shiba
,
Y.
Sakaide
,
Y.
Ishimaru
,
Y.
Okazaki
,
K.
Noguchi
, and
T.
Morimura
,
IEEE Trans. Nucl. Sci.
61
,
3109
(
2014
).
211.
C.
Martinella
,
R.
Stark
,
T.
Ziemann
,
R. G.
Alia
,
Y.
Kadi
,
U.
Grossner
, and
A.
Javanainen
,
IEEE Trans. Nucl. Sci.
66
,
1702
(
2019
).
212.
C.
Martinella
,
T.
Ziemann
,
R.
Stark
,
A.
Tsibizov
,
R. G.
Alia
,
Y.
Kadi
,
U.
Grossner
, and
A.
Javanainen
,
IEEE Trans. Nucl. Sci.
67
,
1381
(
2020
).
213.
C.
Martinella
,
R. G.
Alia
,
A.
Coronetti
,
C.
Cazzaniga
,
M.
Kastriotou
,
Y.
Kadi
,
R.
Gaillard
,
U.
Grossner
, and
A.
Javanainen
,
IEEE Trans. Nucl. Sci.
68
,
634
(
2021
).
214.
Sethu Saveda
Suvanam
, “Radiation hardness of 4H-SiC devices and circuits,’’ Ph.D. thesis in Information and Communication Technology (School of Information and Communication Technology, KTH Royal Institute of Technology, Stockholm, Sweden, 2017).
215.
C.
Martinella
,
P.
Natzke
,
R. G.
Alia
,
Y.
Kadi
,
M.
Rossi
,
J.
Jaatinen
,
H.
Kettunen
,
U.
Grossner
, and
A.
Javanainen
,
Microelectron. Reliab.
128
,
114423
(
2022
).
216.
Corinna
Martinella
, “Single-event radiation effects in silicon carbide power MOSFETs,” Dissertation (Department of Physics, University of Jyväskylä, Jyväskylä, Finland, 2021).
217.
P.
Hazdra
and
J.
Vobecky
,
Phys. Status Solidi A
216
,
1900312
(
2019
).
218.
P. F.
Hinrichsen
,
A. J.
Houdayer
,
A. L.
Barry
, and
J.
Vincent
,
IEEE Trans. Nucl. Sci.
45
,
2808
(
1998
).
219.
J. R.
Srour
,
C. J.
Marshall
, and
P. W.
Marshall
,
IEEE Trans. Nucl. Sci.
50
,
653
(
2003
).
220.
G. P.
Summers
,
E. A.
Burke
,
C. J.
Dale
,
E. A.
Wolicki
,
P. W.
Marshall
, and
M. A.
Gehlhausen
,
IEEE Trans. Nucl. Sci.
34
,
1133
(
1987
).
221.
G. P.
Summers
,
E. A.
Burke
,
P.
Shapiro
,
S. R.
Messenger
, and
R. J.
Walters
,
IEEE Trans. Nucl. Sci.
40
,
1372
(
1993
).
222.
J. R.
Srour
and
D. H.
Lo
,
IEEE Trans. Nucl. Sci.
47
,
2451
(
2000
).
223.
J. R.
Srour
and
J. W.
Palko
,
IEEE Trans. Nucl. Sci.
53
,
3610
(
2006
).
224.
P.
Arnolda
,
C.
Inguimbert
,
T.
Nuns
, and
C.
Boatella-Polo
,
IEEE Trans. Nucl. Sci.
58
,
756
(
2011
).
225.
F.
El Allam
,
C.
Inguimbert
,
A.
Meulenberg
,
A.
Jorio
, and
I.
Zorkani
,
J. Appl. Phys.
123
,
095703
(
2018
).
226.
M. A. J.
Rasel
,
S.
Stepanoff
,
A.
Haque
,
D. E.
Wolfe
,
F.
Ren
, and
S. J.
Pearton
,
J. Vac. Sci. Technol. B
40
,
063204
(
2022
).
227.
J.
Bourgoin
,
D.
Peak
, and
J. W.
Corbett
,
J. Appl. Phys.
44
,
3022
(
1973
).
228.
C. M.
Zetterling
,
S.
Kargarrazi
, and
M.
Shakir
, “
Wide bandgap integrated circuits for high power management in extreme environments
,” in
Next-Generation ADCs, High-Performance Power Management, and Technology Considerations for Advanced Integrated Circuits
, edited by
A.
Baschirotto
,
P.
Harpe
, and
K.
Makinwa
(
Springer
,
Cham
,
2020
).
You do not currently have access to this content.