Aluminum gallium nitride (AlGaN) nanowires by molecular beam epitaxy (MBE) have become an emerging platform for semiconductor deep ultraviolet (UV) light-emitting diodes (LEDs). Despite of the progress, much less attention has been paid to the effect of substrate rotation speed on the device performance. Herein, we investigate the effect of the substrate rotation speed on the nanowire height and diameter uniformity, as well as the electrical and optical performance of MBE-grown AlGaN nanowire deep UV LED structures with low and high substrate rotation speeds. It is found that by increasing the substrate rotation speed from 4 revolutions per minute (rpm) to 15 rpm, the statistical variation of the nanowire height and diameter is reduced significantly. Increasing the substrate rotation speed also improves the device electrical performance, with a factor of 4 reduction on the device series resistance. This improved electrical performance further transfers to the improved optical performance. The underlying mechanisms for these improvements are also discussed.

1.
M.
Kneissl
,
T.-Y.
Seong
,
J.
Han
, and
H.
Amano
,
Nat. Photonics
13
,
233
(
2019
).
2.
H.
Amano
et al,
J. Phys. D: Appl. Phys.
53
,
503001
(
2020
).
3.
Y.
Taniyasu
,
M.
Kasu
, and
T.
Makimoto
,
Nature
441
,
325
(
2006
).
4.
H.
Yoshida
,
Y.
Yamashita
,
M.
Kuwabara
, and
H.
Kan
,
Nat. Photonics
2
,
551
(
2008
).
5.
H.
Hirayama
,
N.
Maeda
,
S.
Fujikawa
,
S.
Toyoda
, and
N.
Kamata
,
Jpn. J. Appl. Phys.
53
,
100209
(
2014
).
6.
D.
Li
,
K.
Jiang
,
X.
Sun
, and
C.
Guo
,
Adv. Opt. Photonics
10
,
43
(
2018
).
7.
T. D.
Moustakas
and
R.
Paiella
,
Rep. Prog. Phys.
80
,
106501
(
2017
).
8.
H.
Sun
et al,
Adv. Funct. Mater.
29
,
1905445
(
2019
).
9.
H.
Yu
,
M. H.
Memon
,
D.
Wang
,
Z.
Ren
,
H.
Zhang
,
C.
Huang
,
M.
Tian
,
H.
Sun
, and
S.
Long
,
Opt. Lett.
46
,
3271
(
2021
).
10.
Y.
Muramoto
,
M.
Kimura
, and
S.
Nouda
,
Semicond. Sci. Technol.
29
,
084004
(
2014
).
11.
Y.
Zhang
,
S.
Krishnamoorthy
,
F.
Akyol
,
J. M.
Johnson
,
A. A.
Allerman
,
M. W.
Moseley
,
A. M.
Armstrong
,
J.
Hwang
, and
S.
Rajan
,
Appl. Phys. Lett.
111
,
051104
(
2017
).
12.
C.
Liu
,
Y. K.
Ooi
,
S. M.
Islam
,
J.
Verma
,
H. G.
Xing
,
D.
Jena
, and
J.
Zhang
,
Appl. Phys. Lett.
110
,
071103
(
2017
).
13.
M. H.
Crawford
, in
Semiconductors and Semimetals
, edited by
Z.
Mi
and
C.
Jagadish
(
Elsevier
,
New York
,
2017
), Vol. 96, pp.
3
44
.
15.
H.
Parimoo
,
Q.
Zhang
,
M.
Vafadar
,
J.
Sivasundarampillai
, and
S.
Zhao
,
Appl. Phys. Lett.
120
,
171108
(
2022
).
16.
A. T. M. G.
Sarwar
,
B. J.
May
,
J. I.
Deitz
,
T. J.
Grassman
,
D. W.
McComb
, and
R. C.
Myers
,
Appl. Phys. Lett.
107
,
101103
(
2015
).
17.
S.
Zhao
and
Z.
Mi
,
IEEE J. Quantum Electron.
54
,
1
(
2018
).
18.
B. J.
May
,
C. M.
Selcu
,
A. T. M. G.
Sarwar
, and
R. C.
Myers
,
Appl. Phys. Lett.
112
,
093107
(
2018
).
19.
M. F.
Vafadar
and
S.
Zhao
,
J. Vac. Sci. Technol. B
40
,
050602
(
2022
).
20.
S.
Zhao
,
J.
Lu
,
X.
Hai
, and
X.
Yin
,
Micromachines
11
,
125
(
2020
).
21.
A. T. M. G.
Sarwar
,
B. J.
May
,
M. F.
Chisholm
,
G. J.
Duscher
, and
R. C.
Myers
,
Nanoscale
8
,
8024
(
2016
).
22.
C.
Zhao
et al,
Prog. Quantum Electron.
61
,
1
(
2018
).
23.
H.
Sun
and
X.
Li
,
Phys. Status Solidi A
216
,
1800420
(
2018
).
24.
N. H.
Tran
,
B. H.
Le
,
S.
Zhao
, and
Z.
Mi
,
Appl. Phys. Lett.
110
,
032102
(
2017
).
25.
Z.
Fang
,
E.
Robin
,
E.
Rozas-Jiménez
,
A.
Cros
,
F.
Donatini
,
N.
Mollard
,
J.
Pernot
, and
B.
Daudin
,
Nano Lett.
15
,
6794
(
2015
).
26.
S.
Zhao
,
B. H.
Le
,
D. P.
Liu
,
X. D.
Liu
,
M. G.
Kibria
,
T.
Szkopek
,
H.
Guo
, and
Z.
Mi
,
Nano Lett.
13
,
5509
(
2013
).
27.
R.
Lin
,
S. V.
Galan
,
H.
Sun
,
Y.
Hu
,
M. S.
Alias
,
B.
Janjua
,
T. K.
Ng
,
B. S.
Ooi
, and
X.
Li
,
Photonics Res.
6
,
457
(
2018
).
28.
J.
Lu
,
M. F.
Vafadar
, and
S.
Zhao
,
J. Nanophotonics
15
,
036002
(
2021
).
29.
M.
Djavid
and
Z.
Mi
,
Appl. Phys. Lett.
108
,
051102
(
2016
).
30.
S.
Zhao
,
X.
Liu
,
Y.
Wu
, and
Z.
Mi
,
Appl. Phys. Lett.
109
,
191106
(
2016
).
31.
K. H.
Li
,
X.
Liu
,
Q.
Wang
,
S.
Zhao
, and
Z.
Mi
,
Nat. Nanotechnol.
10
,
140
(
2015
).
32.
S.
Zhao
,
X.
Liu
,
S. Y.
Woo
,
J.
Kang
,
G. A.
Botton
, and
Z.
Mi
,
Appl. Phys. Lett.
107
,
043101
(
2015
).
33.
X.
Liu
,
B. H.
Le
,
S. Y.
Woo
,
S.
Zhao
,
A.
Pofelski
,
G. A.
Botton
, and
Z.
Mi
,
Opt. Express
25
,
30494
(
2017
).
34.
A.
Bengoechea-Encabo
et al,
J. Cryst. Growth
325
,
89
(
2011
).
35.
M. F.
Vafadar
and
S.
Zhao
,
ACS Appl. Nano Mater.
5
,
16045
(
2022
).
36.
B. H.
Le
,
S.
Zhao
,
X.
Liu
,
S. Y.
Woo
,
G. A.
Botton
, and
Z.
Mi
,
Adv. Mater.
28
,
8446
(
2016
).
37.
S.
Fernández-Garrido
,
J.
Grandal
,
E.
Calleja
,
M. A.
Sánchez-García
, and
D.
López-Romero
,
J. Appl. Phys.
106
,
126102
(
2009
).
38.
J. K.
Zettler
,
C.
Hauswald
,
P.
Corfdir
,
M.
Musolino
,
L.
Geelhaar
,
H.
Riechert
,
O.
Brandt
, and
S.
Fernández-Garrido
,
Cryst. Growth Des.
15
,
4104
(
2015
).
39.
Y.
Zhong
,
E.
Berikaa
,
J.
Lu
,
X.
Yin
, and
S.
Zhao
,
AIP Adv.
10
,
025022
(
2020
).
40.
Z. R.
Wasilewski
, in
Molecular Beam Epitaxy
, edited by
M.
Henini
(
Elsevier
,
Oxford
,
2013
), pp.
631
655
.
41.
C. T.
Foxon
,
S. V.
Novikov
,
J. L.
Hall
,
R. P.
Campion
,
D.
Cherns
,
I.
Griffiths
, and
S.
Khongphetsak
,
J. Cryst. Growth
311
,
3423
(
2009
).
42.
N. V.
Sibirev
,
M.
Tchernycheva
,
M. A.
Timofeeva
,
J.-C.
Harmand
,
G. E.
Cirlin
, and
V. G.
Dubrovskii
,
J. Appl. Phys.
111
,
104317
(
2012
).
43.
F. A.
Chowdhury
,
M. L.
Trudeau
,
H.
Guo
, and
Z.
Mi
,
Nat. Commun.
9
,
1707
(
2018
).
44.
S.
Zhao
et al,
APL Mater.
4
,
086115
(
2016
).
45.
S.
Zhao
,
S. M.
Sadaf
,
S.
Vanka
,
Y.
Wang
,
R.
Rashid
, and
Z.
Mi
,
Appl. Phys. Lett.
109
,
201106
(
2016
).
46.
M. L.
Nakarmi
,
N.
Nepal
,
J. Y.
Lin
, and
H. X.
Jiang
,
Appl. Phys. Lett.
94
,
091903
(
2009
).
47.
K. B.
Nam
,
M. L.
Nakarmi
,
J. Y.
Lin
, and
H. X.
Jiang
,
Appl. Phys. Lett.
86
,
222108
(
2005
).
48.
N.
Nepal
,
M. L.
Nakarmi
,
J. Y.
Lin
, and
H. X.
Jiang
,
Appl. Phys. Lett.
89
,
092107
(
2006
).
You do not currently have access to this content.