Representing field emission data on a Fowler–Nordheim plot is both very common and strongly not recommended. It leads to a spurious estimation of the emitter parameters despite a very good data fit. There is a lack of a reliable method of analysis and a proper estimation of the uncertainty in the extracted parameters. In this article, we show that the uncertainty in the estimation of the field enhancement factor or the emission area can be as high as ±50% even for a tungsten single emitter in good ultrahigh vacuum conditions analyzed by the Murphy–Good model. Moreover, the choice of the exact Murphy–Good method can have a noticeable impact. We found that advanced analysis methods, based on the measurement of the differential conductance of the emitter, are so demanding in terms of emitter stability that up to now its requirements are probably out of reach in any field emission laboratory.

1.
K. L.
Jensen
,
Introduction to the Physics of Electron Emission
(
John Wiley & Sons
,
New York
,
2017
).
2.
R. H.
Fowler
and
L.
Nordheim
,
Proc. R. Soc. London, Ser. A
119
,
173
(
1928
).
3.
J. M.
Beebe
,
B.
Kim
,
J. W.
Gadzuk
,
C. D.
Frisbie
, and
J. G.
Kushmerick
,
Phys. Rev. Lett.
97
,
026801
(
2006
).
4.
R. P.
Bell
,
The Tunnel Effect in Chemistry
(
Springer
,
New York
,
2013
).
5.
D.
Devault
,
J. H.
Parkes
, and
B.
Chance
,
Nature
215
,
642
(
1967
).
6.
R. G.
Forbes
, “21st century planar field emission theory and its role in vacuum breakdown science,” arXiv:2107.08801 (2021).
7.
E. L.
Murphy
and
R.
Good
, Jr.
,
Phys. Rev.
102
,
1464
(
1956
).
8.
W.
Feist
, “Cold electron emitters,” in Electron Beam and Laser Beam Technology (Academic, New York, 1968), Vol. 4.
9.
E. W.
Müller
,
J. Appl. Phys.
26
,
732
(
1955
).
10.
W. P.
Dyke
and
J.
Trolan
,
Phys. Rev.
89
,
799
(
1953
).
11.
R. D.
Young
and
E. W.
Müller
,
J. Appl. Phys.
33
,
91
(
1962
).
12.
R. D.
Young
and
H. E.
Clark
,
Phys. Rev. Lett.
17
,
351
(
1966
).
13.
A. G. J.
Van Oostrom
,
Philips Res. Rep.
1
,
1
(
1966
).
14.
A.
Modinos
,
Field, Thermionic, and Secondary Electron Emission Spectroscopy
(
Springer
,
New York
,
1984
).
15.
C.
Ehrlich
and
E.
Plummer
,
Phys. Rev. B
18
,
3767
(
1978
).
16.
V.
Zhirnov
,
C.
Lizzul-Rinne
,
G.
Wojak
,
R.
Sanwald
, and
J.
Hren
,
J. Vac. Sci. Technol. B
19
,
87
(
2001
).
17.
R. G.
Forbes
,
Appl. Phys. Lett.
92
,
193105
(
2008
).
18.
A.
Kyritsakis
and
J.
Xanthakis
,
Proc. R. Soc. London, Ser. A
471
,
20140811
(
2015
).
19.
K. L.
Jensen
,
J. Appl. Phys.
126
,
065302
(
2019
).
20.
M.
Zubair
,
Y. S.
Ang
, and
L. K.
Ang
,
IEEE Trans. Electron Devices
65
,
2089
(
2018
).
21.
S.-D.
Liang
and
L.
Chen
,
Phys. Rev. Lett.
101
,
027602
(
2008
).
22.
R. G.
Forbes
,
J. Vac. Sci. Technol. B
28
,
C2A43
C2A49
(
2010
).
23.
S.
Lachmann
,
M.
Jacewicz
,
I.
Profatilova
,
J.
Paszkiewicz
,
W.
Wuensch
, and
Y.
Ashkenazy
,
Phys. Rev. Appl.
16
,
024007
(
2021
).
24.
A.
Kyritsakis
and
F.
Djurabekova
,
Comput. Mater. Sci.
128
,
15
(
2017
).
25.
B.
Lepetit
,
J. Appl. Phys.
125
,
025107
(
2019
).
26.
C. P.
de Castro
,
T. A.
de Assis
,
R.
Rivelino
,
F.
de B. Mota
,
C. M.
de Castilho
, and
R. G.
Forbes
,
J. Chem. Inf. Model.
60
,
714
(
2019
).
27.
E.
Popov
,
A.
Kolosko
,
M.
Ershov
, and
S.
Filippov
, “Development of on-line emission parameters processing research technique of polymer-MWCNT emitters,” in 25th International Vacuum Nanoelectronics Conference (IEEE, New York, 2012), pp. 1–2.
28.
E.
Feizi
,
K.
Scott
,
M.
Baxendale
,
C.
Pal
,
A.
Ray
,
W.
Wang
,
Y.
Pang
, and
S.
Hodgson
,
Mater. Chem. Phys.
135
,
832
(
2012
).
29.
R.
Forbes
,
E.
Popov
,
A.
Kolosko
, and
S.
Filippov
,
R. Soc. Open Sci.
8
,
201986
(
2021
).
30.
A.
Ayari
,
P.
Vincent
,
S.
Perisanu
,
P.
Poncharal
, and
S. T.
Purcell
, “Does a banal tungsten field emitter obey the field emission theory?,” in 2021 34th International Vacuum Nanoelectronics Conference (IVNC) (IEEE, New York, 2021), pp. 1–2.
31.
E. O.
Popov
,
S. V.
Filippov
,
A. G.
Kolosko
, and
A.
Knápek
,
J. Vac. Sci. Technol. B
40
,
024201
(
2022
).
32.
A.
Ayari
,
P.
Vincent
,
S.
Perisanu
,
P.
Poncharal
, and
S. T.
Purcell
,
J. Vac. Sci. Technol. B
40
,
024001
(
2022
).
33.
M. M.
Allaham
,
R. G.
Forbes
,
A.
Knápek
,
D.
Sobola
,
D.
Burda
,
P.
Sedlák
, and
M. S.
Mousa
,
Mater. Today Commun.
31
,
103654
(
2022
).
34.
A.
Ayari
, “Dataset for all field emission experiments are noisy, are any meaningful?,” see (2022).
35.
C. A.
Spindt
,
I.
Brodie
,
L.
Humphrey
, and
E. R.
Westerberg
,
J. Appl. Phys.
47
,
5248
(
1976
).
36.
R.
Gomer
, “Field emission microscopy and some applications to catalysis and chemisorption,” in Advances in Catalysis (Elsevier, New York, 1955), Vol. 7, pp. 93–134.
37.
T. A.
de Assis
,
F. F.
Dall’Agnol
, and
R. G.
Forbes
,
J. Phys.: Condens. Matter.
34
,
493001
(
2022
).
38.
R. G.
Forbes
,
Appl. Phys. Lett.
89
,
113122
(
2006
).
39.
W.
Dyke
and
W.
Dolan
, “Field emission,” in Advances in Electronics and Electron Physics (Elsevier, New York, 1956), Vol. 8, pp. 89–185.
40.
J.
Houston
,
Phys. Rev.
88
,
349
(
1952
).
41.
F.
Charbonnier
and
E.
Martin
,
J. Appl. Phys.
33
,
1897
(
1962
).
42.
R. G.
Forbes
,
J. Vac. Sci. Technol. B
17
,
526
(
1999
).
43.
S. V.
Filippov
,
A. G.
Kolosko
,
E. O.
Popov
, and
R. G.
Forbes
, “Field emission: Calculations supporting a new methodology of comparing theory with experiment,” arXiv:2205.02352 (2022).
44.
L.
Swanson
and
L.
Crouser
,
Phys. Rev.
163
,
622
(
1967
).
45.
L.
Swanson
and
G.
Schwind
,
Adv. Imaging Electron Phys.
159
,
63
(
2009
).
You do not currently have access to this content.