Silicon gated field emitter arrays have been used as a vacuum transistor to demonstrate a 152 kHz Colpitts oscillator. The transfer and output characteristics of the 1000 × 1000 silicon arrays were measured using a collector placed ≈ 1 mm away with a gate voltage up to 40 V and a collector voltage up to 200 V. The data were used to establish an LTspice transistor model based on a field emission tip model and a collector current model that fit the characteristics. Then, the LTspice model was used to design a low frequency Colpitts oscillator. Furthermore, experiments were carried out to successfully demonstrate the oscillation. Oscillation frequency was 152 kHz with a peak to peak voltage of 25 V for a tip to ground series resistance value of 10 kΩ at 50 V on the gate and 210 V on the collector. Further, the oscillator was also tested at 50, 100, 200, 300, and 400 °C. It was observed that frequency shifts for each temperature which is due to the change in the overall capacitance of the test setup. This type of device could be used as a temperature sensor in harsh environments.

1.
N.
Xu
,
Y.
Chen
,
S.
Deng
,
J.
Chen
,
X.
Ma
, and
E.
Wang
,
J. Phys. D: Appl. Phys.
34
,
1597
(
2001
).
2.
H.
Tian
 et al,
IEEE Trans. Electron Devices
66
,
1504
(
2019
).
3.
W.
Benham
,
Proc. Phys. Soc.
47
,
1
(
1935
).
4.
J.-W.
Han
,
D.-I.
Moon
, and
M.
Meyyappan
,
Nano Lett.
17
,
2146
(
2017
).
5.
J.-W.
Han
,
J.
Sub Oh
, and
M.
Meyyappan
,
Appl. Phys. Lett.
100
,
213505
(
2012
).
6.
J.-W.
Han
,
M.-L.
Seol
,
D.-I.
Moon
,
G.
Hunter
, and
M.
Meyyappan
,
Nat. Electron.
2
,
405
(
2019
).
7.
R.
Bhattacharya
,
N.
Karaulac
,
W.
Chern
,
A.
Akinwande
, and
J.
Browning
,
J. Vac. Sci. Technol. B
39
,
023201
(
2021
).
8.
J. L.
Davidson
,
W. P.
Kang
,
K.
Subramanian
,
A. G.
Holmes-Siedle
,
R. A.
Reed
, and
K. F.
Galloway
,
IEEE Trans. Nucl. Sci.
56
,
2225
(
2009
).
9.
S.-H.
Hsu
,
W. P.
Kang
,
J. L.
Davidson
,
J. H.
Huang
, and
D. V.
Kerns
,
IEEE Trans. Electron Devices
60
,
487
(
2013
).
10.
J.-W.
Han
,
J. S.
Oh
, and
M.
Meyyappan
,
IEEE Trans. Nanotechnol.
13
,
464
(
2014
).
11.
R. H.
Fowler
and
L.
Nordheim
,
Proc. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Char.
119
,
173
(
1928
).
12.
M.
Ding
,
G.
Sha
, and
A. I.
Akinwande
,
IEEE Trans. Electron Devices
49
,
2333
(
2002
).
13.
G.-S.
Park
and
R.
Bhattacharya
, “
Highly electrically conductive tungsten doped reduced graphene oxide film as large current density field emitter
,”
Ph.D. dissertation
(
Seoul National University
,
2018
).
14.
S.
Guerrera
and
A. I.
Akinwande
,
Nanotechnology
27
,
295302
(
2016
).
15.
C.
Li
,
X.
Yang
,
S.
Ding
,
Q.
Dai
,
X.
Qiu
,
W.
Lei
,
X.
Zhang
, and
B.
Wang
,
IEEE Electron Device Lett.
35
,
786
(
2014
).
16.
S. J.
Park
,
O. S.
Kwon
,
S. H.
Lee
,
H. S.
Song
,
T. H.
Park
, and
J.
Jang
,
Nano Lett.
12
,
5082
(
2012
).
17.
S. A.
Guerrera
and
A. I.
Akinwande
,
IEEE Electron Device Lett.
37
,
96
(
2016
).
18.
G.
Rughoobur
,
J.
Zhao
,
L.
Jain
,
A.
Zubair
,
T.
Palacios
,
J.
Kong
, and
A. I.
Akinwande
,
2020 Device Research Conference (DRC)
, Columbus, OH (IEEE, Piscataway, NJ
2020
), pp.
1
2
.
19.
J.
Xu
,
Y.
Qin
,
Y.
Shi
,
Y.
Shi
,
Y.
Yang
, and
X.
Zhang
,
Nanosc. Adv.
2
,
3582
(
2020
).
20.
H.
Gray
,
G.
Campisi
, and
R.
Greene
,
1986 International Electron Devices Meeting
(
IEEE
,
Los Angeles, CA
,
1986
), pp.
776
779
.
21.
J.-W.
Han
,
M.-L.
Seol
,
J.
Kim
, and
M.
Meyyappan
,
ACS Appl. Nano Mater.
3
,
11481
(
2020
).
23.
O.
De Feo
,
G. M.
Maggio
, and
M. P.
Kennedy
,
Int. J. Bifurcat. Chaos
10
,
935
(
2000
).
24.
L. F.
Velasquez-Garcia
, S. A. Guerrera, Y. Niu, and
A. I.
Akinwande
,
IEEE Trans. Electron Devices
58
(6),
1783
(
2011
).
25.
R.
Bhattacharya
,
N.
Karaulac
,
G.
Rughoobur
,
W.
Chern
,
A. I.
Akinwande
, and
J.
Browning
,
J. Vac. Sci. Technol. B
39
,
033201
(
2021
).
26.
E. L.
Murphy
and
R.
Good
, Jr.
,
Phys. Rev.
102
,
1464
(
1956
).
27.
K. L.
Jensen
,
J. Vac. Sci. Technol. B
13
,
516
(
1995
).
28.
R. G.
Forbes
,
Mod. Dev. Vac. Electron Sources
135
,
387
(
2020
).
29.
G. M.
Maggio
,
O.
De Feo
, and
M. P.
Kennedy
,
IEEE Trans. Circuits Syst. I: Fund. Theory Appl.
46
,
1118
(
1999
).
30.
J.
Wang
,
B.
Bao
,
J.
Xu
,
G.
Zhou
, and
W.
Hu
,
IEEE Trans. Ind. Electron.
60
,
1759
(
2013
).
31.
J.
Browning
,
N. E.
McGruer
,
W.
Bintz
, and
M.
Gilmore
,
IEEE Electron Device Lett.
13
,
167
(
1992
).
32.
J.
Browning
,
N.
McGruer
,
S.
Meassick
,
C.
Chan
,
W. J.
Bintz
, and
M.
Gilmore
,
IEEE Trans. Plasma Sci.
20
,
499
(
1992
).
33.
B.
Gorfinkel
and
J. M.
Kim
,
J. Vac. Sci. Technol. B
15
,
524
(
1997
).
34.
B. R.
Chalamala
,
R. H.
Reuss
, and
K. A.
Dean
,
Appl. Phys. Lett.
79
,
2648
(
2001
).
35.
D.
Rosslere
,
Developments in Ceramic Materials Research
(
Nova
, New York,
2007
).
36.
See supplementary material at www.scitation.org/doi/suppl/10.1116/6.0002272 for a detailed description of the vacuum transistor LTspice model development.

Supplementary Material

You do not currently have access to this content.