High aspect ratio (HAR) structures have many promising applications such as biomedical detection, optical spectroscopy, and material characterization. Bottom-up self-assembly is a low-cost method to fabricate HAR structures, but it remains challenging to control the structure dimension, shape, density, and location. In this paper, an optimized top-down method using a combination of pseudo-Bosch etching and wet isotropic thinning/sharpening is presented to fabricate HAR silicon (Si) nanopillar and nanocone arrays. To achieve these structure profiles, electron beam lithography and reactive ion etching were carried out to fabricate silicon pillars having a nearly vertical sidewall, followed by thinning or sharpening by wet etching with a mixture of hydrofluoric (HF) acid and nitric acid (HNO3). For the dry etching step using the pseudo-Bosch process, the sidewall angle is largely dependent on the SF6/C4F8 gas flow ratio, and it was found that a vertical profile can be attained with a ratio of 22/38. For the wet etching process, a very large HNO3/HF volume ratio is shown to give smooth etching with a slow and controllable etching rate. The final structure profile also depends on the pattern density/array periodicity. When the array period is large, silicon nanopillar is thinned down, and its aspect ratio can reach 1:135 with a sub-100 nm apex. When the pillar array becomes very dense (periodicity much smaller than height), a very sharp nanocone structure is obtained after wet etching with an apex diameter under 20 nm.

1.
Y.
Song
,
P. K.
Mohseni
,
S. H.
Kim
,
J. C.
Shin
,
T.
Ishihara
,
I.
Adesida
, and
X.
Li
,
IEEE Electron Device Lett.
37
,
970
(
2016
).
2.
I. E.
Hashem
,
C. Z.
Carlin
,
B. G.
Hagar
,
P. C.
Colter
, and
S. M.
Bedair
,
J. Appl. Phys.
119
,
095706
(
2016
).
3.
A.
Sharma
,
R.
Mahlouji
,
L.
Wu
,
M. A.
Verheijen
,
V.
Vandalon
,
S.
Balasubramanyam
,
J. P.
Hofmann
,
W. M. M.
Kessels
, and
A. A.
Bol
,
Nanotechnology
31
,
255603
(
2020
).
4.
Q.
Teng
,
K.
Wang
,
L.
Zhang
, and
J.
He
,
IEEE Sens. J.
20
,
7265
(
2020
).
5.
S. W.
Han
,
C.
Nakamura
,
I.
Obataya
,
N.
Nakamura
, and
J.
Miyake
,
Biosens. Bioelectron.
20
,
2120
(
2005
).
6.
I.
Obataya
,
C.
Nakamura
,
S.
Han
,
N.
Nakamura
, and
J.
Miyake
,
Nano Lett.
5
,
27
(
2005
).
7.
D.
Matsumoto
,
R. R.
Sathuluri
,
Y.
Kato
,
Y. R.
Silberberg
,
R.
Kawamura
,
F.
Iwata
,
T.
Kobayashi
, and
C.
Nakamura
,
Sci. Rep.
5
,
15325
(
2015
).
8.
D.
Lombardo
,
M. A.
Kiselev
, and
M. T.
Caccamo
,
J. Nanomater.
2019
,
1
(
2019
).
9.
V.
Bhavana
,
P.
Thakor
,
S. B.
Singh
, and
N. K.
Mehra
,
Life Sci.
261
,
118336
(
2020
).
11.
R. S.
Wagner
and
W. C.
Ellis
,
Appl. Phys. Lett.
4
,
89
(
1964
).
12.
D. S.
Engstrom
,
V.
Savu
,
X.
Zhu
,
I. Y. Y.
Bu
,
W. I.
Milne
,
J.
Brugger
, and
P.
Boggild
,
Nano Lett.
11
,
1568
(
2011
).
13.
14.
K.
Li
,
M. J.
Wojcik
,
R.
Divan
,
L. E.
Ocola
,
B.
Shi
,
D.
Rosenmann
, and
C.
Jacobsen
,
J. Vac. Sci. Technol. B
35
,
06G901
(
2017
).
15.
B.
Wu
,
A.
Kumar
, and
S.
Pamarthy
,
J. Appl. Phys.
108
,
051101
(
2010
).
16.
K. J.
Morton
,
G.
Nieberg
,
S.
Bai
, and
S. Y.
Chou
,
Nanotechnology
19
,
345301
(
2008
).
17.
P.
Mukherjee
,
M. G.
Kang
,
T. H.
Zurbuchen
,
L. J.
Guo
, and
F. A.
Herrero
,
J. Vac. Sci. Technol. B
25
,
2645
(
2007
).
18.
A.
Ayari-Kanoun
,
F.
Aydinoglu
,
B.
Cui
, and
F.
Saffih
,
J. Vac. Sci. Technol. B
34
,
06KD01
(
2016
).
19.
F.
Saffih
,
C.
Con
,
A.
Alshammari
,
M.
Yavuz
, and
B.
Cui
,
J. Vac. Sci. Technol. B
32
,
06FI04
(
2014
).
20.
C.
Con
,
J.
Zhang
, and
B.
Cui
,
Nanotechnology
25
,
175301
(
2014
).
21.
B.
Schwartz
and
H.
Robbins
,
J. Electrochem. Soc.
123
,
1903
(
1976
).
22.
R. B.
Marcus
and
T. T.
Sheng
,
J. Electrochem. Soc.
129
,
1278
(
1982
).
You do not currently have access to this content.