A simple physical metal mask is efficiently employed to obtain an array of silicon (Si) nanowires (Si-NWs) on a Si substrate grown using the hot filament chemical vapor deposition route. Well adhered and uniform coating of different thicknesses (20 and 50 nm) of lanthanum hexaboride (LaB6) on Si-NWs was obtained using electron beam evaporation technique. The thickness of LaB6 coating was estimated from ellipsometry measurement. Structural, morphological, and chemical properties of the LaB6 coated Si-NWs (LaB6@Si-NWs) arrays were revealed using x-ray diffraction, field emission scanning electron microscope, transmission electron microscope, Raman spectroscopy, and x-ray photoelectron spectroscopy. Field electron emission characteristics of pristine Si-NW array and LaB6 coated Si-NWs array emitters were studied in planar diode configuration at a base pressure of 1 × 10−8 mbar. The values of turn-on field (current density ∼1 μA/cm2) were observed as ∼2.2, 1.2, and 1.6 V/μm for pristine Si-NWs, LaB6@Si-NWs_20, and LaB6@Si-NWs_50 array emitters, respectively. Furthermore, maximum emission current densities of ∼1276.81, 2763.64, and 2231.81 μA/cm2 have been extracted from the pristine Si-NWs, LaB6@Si-NWS_20, and LaB6@Si-NWS_50 array emitters at an applied field of 3.1, 2.7, and 2.7 V/μm, respectively. The LaB6@Si-NWS_20 array emitter demonstrated superior FEE properties as compared to the pristine Si-NWs and LaB6@Si-NWS_50 emitters. Furthermore, LaB6@Si-NWS_20 emitter depicted very good emission current stability tested at a preset value of 1 μA over a duration of 3 h. The enhanced FEE performance exhibited by the LaB6@Si-NWs_20 array emitter is attributed to reduction in effective work function and enhanced electron tunneling probability across the LaB6–Si interface.

1.
S.
Chatterjee
,
A.
Pal
,
I.
Mukherjee
,
I.
Chakraborty
, and
P.
Ayyub
,
J. Alloys Compd.
789
,
1
(
2019
).
2.
T.
Sugino
,
C.
Kimura
, and
T.
Yamamoto
,
Appl. Phys. Lett.
80
,
3602
(
2002
).
3.
H.
Zhang
,
J.
Tang
,
Q.
Zhang
,
G.
Zhao
,
G.
Yang
,
J.
Zhang
,
O.
Zhou
, and
L. C.
Qin
,
Adv. Mater.
18
,
87
(
2006
).
4.
R.
Patra
 et al,
J. Appl. Phys.
116
,
164309
(
2014
).
5.
A. A.
Talin
,
K. A.
Dean
, and
J. E.
Jaskie
,
Solid State Electron.
45
,
963
(
2001
).
6.
S. R.
Suryawanshi
,
A. K.
Singh
,
M.
Deo
,
D. J.
Late
,
S.
Sinha
, and
M. A.
More
,
CrystEngComm.
17
,
3936
(
2015
).
7.
M.
Kumari
 et al,
Appl. Phys. Lett.
101
,
123116
(
2012
).
8.
L.
Liao
,
J. C.
Li
,
D. F.
Wang
,
C.
Liu
,
C. S.
Liu
,
Q.
Fu
, and
L. X.
Fan
,
Nanotechnology
16
,
985
(
2005
).
9.
M.
Zhang
,
Z. J.
Li
,
J.
Zhao
,
L.
Gong
,
A. L.
Meng
,
X. L.
Liu
, and
X. L.
Qi
,
J. Mater. Chem. C
3
,
658
(
2015
).
10.
S.
Neupane
,
M.
Lastres
,
M.
Chiarella
,
L.
Wenzhi
,
Q.
Su
, and
G.
Du
,
Carbon
50
,
2641
(
2012
).
11.
T. Y.
Posos
,
S. B.
Fairchild
,
J.
Park
, and
S. V.
Baryshev
,
J. Vac. Sci. Technol. B
38
,
024006
(
2020
).
12.
L. A.
Li
,
S. H.
Cheng
,
H. D.
Li
,
Q.
Yu
,
J. W.
Liu
, and
X. Y.
Lv
,
Micro Nano Lett.
2
,
154
(
2010
).
13.
D.
Banerjee
,
S.
Mukherjee
, and
K. K.
Chattopadhyay
,
Appl. Surf. Sci.
257
,
3717
(
2011
).
14.
Y.
Zhang
,
J.
Du
,
S.
Tang
,
P.
Liu
,
S.
Deng
,
J.
Chen
, and
N.
Xu
,
Nanotechnology
23
,
015202
(
2011
).
15.
R.
Khare
,
D. B.
Shinde
,
S.
Bansode
,
M. A.
More
,
M.
Majumder
,
V. K.
Pillai
, and
D. J.
Late
,
Appl. Phys. Lett.
106
,
023111
(
2015
).
16.
H.
Yamaguchi
 et al,
ACS Nano
5
,
4945
(
2011
).
17.
D.
Temple
,
Mater. Sci. Eng. R Rep.
24
,
185
(
1999
).
18.
R. R.
Devarapalli
,
R. V.
Kashid
,
A. B.
Deshmukh
,
P.
Sharma
,
M. R.
Das
,
M. A.
More
, and
M. V.
Shelke
,
J. Mater. Chem. C
1
,
5040
(
2013
).
19.
Q.
Fan
,
Q.
Zhang
,
Y.
Zhao
, and
Q.
Ding
,
J. Rare Earths
31
,
145
(
2013
).
20.
D. J.
Late
,
M. A.
More
, and
D. S.
Joag
,
Appl. Phys. Lett.
89
,
123510
(
2006
).
21.
C. X.
Zhao
,
Y. F.
Li
,
J.
Chen
,
S. Z.
Deng
, and
N. S.
Xu
,
Ultramicroscopy
132
,
36
(
2013
).
22.
S.
Dhongade
,
P. R.
Mutadak
,
A. B.
Deore
,
M. A.
More
,
A.
Furube
, and
P.
Koinkar
,
ACS Appl. Nano Mater.
3
,
9749
(
2020
).
23.
A.
Tarun
,
N.
Hayazawa
,
H.
Ishitobi
,
S.
Kawata
,
M.
Reiche
, and
O.
Moutanabbir
,
Nano Lett.
11
,
4780
(
2011
).
24.
T. M.
Mattox
,
S.
Chockkalingam
,
I.
Roh
, and
J. J.
Urban
,
J. Phys. Chem. C
120
,
5188
(
2016
).
25.
R.
Schmechel
,
H.
Werheit
, and
Yu. B.
Paderno
,
J. Solid State Chem.
133
,
264
(
1997
).
26.
T. M.
Mattox
and
J. J.
Urban
,
Materials
11
,
2473
(
2018
).
27.
B. K.
Godwal
,
E. A.
Petruska
,
S.
Speziale
,
J.
Yan
,
S. M.
Clark
,
M. B.
Kruger
, and
R.
Jeanloz
,
Phys. Rev. B
80
,
172104
(
2009
).
28.
R.
Huang
and
J.
Zhu
,
Mater. Chem. Phys.
121
,
519
(
2010
).
29.
E. A.
Dalchiele
,
F.
Martín
,
D.
Leinen
,
R. E.
Marotti
, and
J. R.
Ramos-Barrado
,
Thin Film Solids
518
,
1804
(
2010
).
30.
R.
Lv
,
E.
Wu
,
R.
Wu
,
W.
Shen
,
C.
Ma
,
R.
Shi
,
R.
Guo
,
M.
Shao
, and
J.
Liu
,
J. Mater. Chem. B
8
,
7792
(
2020
).
31.
S. K.
John
and
A. A.
Anappara
,
RSC Adv.
10
,
31788
(
2020
).
32.
A.
Rattanachata
 et al,
Phys. Rev. Mater.
5
,
055002
(
2021
).
33.
Y.
Wu
,
G.
Min
,
D.
Chen
,
L.
Zhang
, and
H.
Yu
,
Ceram. Int.
41
,
1005
(
2015
).
34.
R.
Ramachandran
,
D.
Jung
,
N. A.
Bernier
,
J. K.
Logan
,
M. A.
Waddington
, and
A. M.
Spokoyny
,
Inorg. Chem.
57
,
8037
(
2018
).
35.
D.
Jung
,
L. M. A.
Saleh
,
Z. J.
Berkson
,
M. F.
El-Kady
,
J. Y.
Hwang
,
N.
Mohamed
, and
A. M.
Spokoyny
,
Nat. Mater.
17
,
341
(
2018
).
36.
W.
Yao
,
Y.
Cui
,
L.
Zhan
,
F.
Chen
,
Y.
Zhang
,
Y.
Wang
, and
Y.
Song
,
Appl. Surf. Sci.
425
,
614
(
2017
).
37.
M. Y.
Bashouti
,
K.
Sardashti
,
J.
Ristein
, and
S. H.
Christiansen
,
Phys. Chem. Chem. Phys.
14
,
11877
(
2012
).
38.
O. A.
Chuvenkova
 et al,
Phys. Solid State
57
,
153
(
2015
).
39.
R. H.
Fowler
and
L.
Nordheim
,
Proc. R. Soc. London A
119
,
173
(
1928
).
40.
M.
Jha
,
R.
Patra
,
S.
Ghosh
, and
A. K.
Ganguli
,
Solid State Commun.
153
,
35
(
2013
).
41.
Q. J.
Xu
,
T.
Mori
,
Y.
Bando
,
D.
Golberg
,
D.
Berthebaud
, and
A.
Prytuliak
,
Mater. Sci. Eng. B
177
,
117
(
2012
).
42.
S. R.
Suryawanshi
,
A. K.
Singh
,
D. M.
Phase
,
D. J.
Late
,
S.
Sinha
, and
M. A.
More
,
Appl. Phys. A
122
,
899
(
2016
).
43.
K. K.
Yadav
,
S. M.
Sreekanth
,
S.
Ghosh
,
A. K.
Ganguli
, and
M.
Jha
,
Appl. Surf. Sci.
526
,
146652
(
2020
).
44.
R.
Patra
 et al,
J. Appl. Phys.
115
,
094302
(
2014
).
45.
D. J.
Late
,
M. A.
More
,
S.
Sinha
,
K.
Dasgupta
,
P.
Misra
,
B. N.
Singh
,
L. M.
Kukreja
,
S. V.
Bhoraskar
, and
D. S.
Joag
,
Appl. Phys. A
104
,
677
(
2011
).
46.
V. S.
Bagal
,
G. P.
Patil
,
A. B.
Deore
,
S. R.
Suryawanshi
,
D. J.
Late
,
M. A.
Morec
,
Padmakar
, and
G.
Chavan
,
RSC Adv.
6
,
41261
(
2016
).
47.
F. C. K.
Au
,
K. W.
Wong
,
Y. H.
Tang
,
Y. F.
Zhang
,
I.
Bello
, and
S. T.
Lee
,
Appl. Phys. Lett.
75
,
1700
(
1999
).
48.
See the supplementary material at https://www.scitation.org/doi/suppl/10.1116/6.0002464 for detail growth mechanism of Si-NWS and schematic energy band diagram of before and after coating of LaB6 on Si-NWs.

Supplementary Material

You do not currently have access to this content.