Ytterbium-doped halide double perovskites of the form Cs2AgBX6 (B = Bi, Sb, In and X = Cl, Br) are being explored as potential lead-free UV/blue to near-infrared (NIR) downconversion materials. Of the various B and X combinations, Cs2AgSbBr6 has only recently been synthesized and never yet deposited as a film using vapor deposition. Here, we report the deposition of undoped and Yb-doped Cs2AgSbBr6 thin films via thermal evaporation from CsBr, AgBr, SbBr3, and YbBr3. Film composition control is difficult due to the high volatility of SbBr3. We explored various strategies, including co-evaporation and sequential deposition of layers, followed by postdeposition annealing. The formation of Cs2AgSbBr6 was confirmed with x-ray diffraction and optical absorption, although impurity phases such as Cs2AgBr3 were often present because the films easily became Sb-deficient due to volatile SbBr3 leaving the film. NIR photoluminescence quantum yields of up to 12% were achieved with this material for the first time. The optical properties and reported bandgap transitions are critically reviewed and assessed in light of new optical absorption data from thin films. The Cs2AgSbBr6 film has an indirect bandgap at 1.95 ± 0.05 eV followed by a direct transition at 2.5 ± 0.05 eV.

1.
D.
Timmerman
,
I.
Izeddin
,
P.
Stallinga
,
I. N.
Yassievich
, and
T.
Gregorkiewicz
,
Nat. Photonics
2
,
105
(
2008
).
2.
R. T.
Wegh
,
H.
Donker
,
K. D.
Oskam
, and
A.
Meijerink
,
Science
283
,
663
(
1999
).
3.
R. D.
Schaller
,
M.
Sykora
,
J. M.
Pietryga
, and
V. I.
Klimov
,
Nano Lett.
6
,
424
(
2006
).
4.
B. S.
Richards
,
Sol. Energy Mater. Sol. Cells
90
,
1189
(
2006
).
5.
T.
Trupke
,
M. A.
Green
, and
P.
Würfel
,
J. Appl. Phys.
92
,
1668
(
2002
).
6.
D.
Chen
,
Y.
Wang
,
Y.
Yu
,
P.
Huang
, and
F.
Weng
,
Opt. Lett.
33
,
1884
(
2008
).
7.
W.
Shockley
and
H. J.
Queisser
,
J. Appl. Phys.
32
,
510
(
1961
).
8.
M. J.
Crane
,
D. M.
Kroupa
, and
D. R.
Gamelin
,
Energy Environ. Sci.
12
,
2486
(
2019
).
9.
Q. Y.
Zhang
and
X. Y.
Huang
,
Prog. Mater. Sci.
55
,
353
(
2010
).
10.
B. M.
van der Ende
,
L.
Aarts
, and
A.
Meijerink
,
Phys. Chem. Chem. Phys.
11
,
11081
(
2009
).
11.
W. J.
Mir
,
T.
Sheikh
,
H.
Arfin
,
Z.
Xia
, and
A.
Nag
,
NPG Asia Mater.
12
,
9
(
2020
).
12.
S. M.
Ferro
,
M.
Wobben
, and
B.
Ehrler
,
Mater. Horiz.
8
,
1072
(
2021
).
14.
D. M.
Kroupa
,
J. Y.
Roh
,
T. J.
Milstein
,
S. E.
Creutz
, and
D. R.
Gamelin
,
ACS Energy Lett.
3
,
2390
(
2018
).
15.
T. J.
Milstein
,
D. M.
Kroupa
, and
D. R.
Gamelin
,
Nano Lett.
18
,
3792
(
2018
).
16.
S.
Zhao
,
Y.
Zhang
, and
Z.
Zang
,
Chem. Commun.
56
,
5811
(
2020
).
17.
L.
Protesescu
,
S.
Yakunin
,
M. I.
Bodnarchuk
,
F.
Krieg
,
R.
Caputo
,
C. H.
Hendon
,
R. X.
Yang
,
A.
Walsh
, and
M. V.
Kovalenko
,
Nano Lett.
15
,
3692
(
2015
).
18.
X.
Li
,
S.
Duan
,
H.
Liu
,
G.
Chen
,
Y.
Luo
, and
H.
Ågren
,
J. Phys. Chem. Lett.
10
,
487
(
2019
).
19.
W.
Lee
,
S.
Hong
, and
S.
Kim
,
J. Phys. Chem. C
123
,
2665
(
2019
).
20.
W.
Liu
,
Q.
Lin
,
H.
Li
,
K.
Wu
,
I.
Robel
,
J. M.
Pietryga
, and
V. I.
Klimov
,
J. Am. Chem. Soc.
138
,
14954
(
2016
).
21.
D.
Parobek
,
B. J.
Roman
,
Y.
Dong
,
H.
Jin
,
E.
Lee
,
M.
Sheldon
, and
D. H.
Son
,
Nano Lett.
16
,
7376
(
2016
).
22.
X.
Yuan
,
S.
Ji
,
M. C.
De Siena
,
L.
Fei
,
Z.
Zhao
,
Y.
Wang
,
H.
Li
,
J.
Zhao
, and
D. R.
Gamelin
,
Chem. Mater.
29
,
8003
(
2017
).
23.
H.
Liu
,
Z.
Wu
,
J.
Shao
,
D.
Yao
,
H.
Gao
,
Y.
Liu
,
W.
Yu
,
H.
Zhang
, and
B.
Yang
,
ACS Nano
11
,
2239
(
2017
).
24.
W.
van der Stam
,
J. J.
Geuchies
,
T.
Altantzis
,
K. H. W.
van den Bos
,
J. D.
Meeldijk
,
S.
Van Aert
,
S.
Bals
,
D.
Vanmaekelbergh
, and
C.
de Mello Donega
,
J. Am. Chem. Soc.
139
,
4087
(
2017
).
25.
L.
Chu
,
W.
Ahmad
,
W.
Liu
,
J.
Yang
,
R.
Zhang
,
Y.
Sun
,
J.
Yang
, and
X.
Li
,
Nano-Micro Lett.
11
,
16
(
2019
).
26.
F.
Heidari Gourji
and
D.
Velauthapillai
,
Molecules
26
,
2010
(
2021
).
27.
Y.
Iso
and
T.
Isobe
,
ECS J. Solid State Sci. Technol.
7
,
R3040
(
2018
).
28.
J.
Duan
,
H.
Xu
,
W. E. I.
Sha
,
Y.
Zhao
,
Y.
Wang
,
X.
Yang
, and
Q.
Tang
,
J. Mater. Chem. A
7
,
21036
(
2019
).
29.
Q.
Zhang
,
F.
Hao
,
J.
Li
,
Y.
Zhou
,
Y.
Wei
, and
H.
Lin
,
Sci. Technol. Adv. Mater.
19
,
425
(
2018
).
30.
S. F.
Hoefler
,
G.
Trimmel
, and
T.
Rath
,
Monatsh. Chem. Chem. Mon.
148
,
795
(
2017
).
31.
A. K.
Jena
,
A.
Kulkarni
, and
T.
Miyasaka
,
Chem. Rev.
119
,
3036
(
2019
).
32.
X.-G.
Zhao
,
D.
Yang
,
J.-C.
Ren
,
Y.
Sun
,
Z.
Xiao
, and
L.
Zhang
,
Joule
2
,
1662
(
2018
).
33.
H.
Tang
,
Y.
Xu
,
X.
Hu
,
Q.
Hu
,
T.
Chen
,
W.
Jiang
,
L.
Wang
, and
W.
Jiang
,
Adv. Sci.
8
,
2004118
(
2021
).
34.
A.
Bala
and
V.
Kumar
,
Phys. Rev. Mater.
5
,
095401
(
2021
).
35.
C. W.
Ahn
 et al.,
J. Materiomics
6
,
651
660
(
2020
).
36.
G.
Volonakis
 et al.,
J. Phys. Chem. Lett.
8
,
772
(
2017
).
37.
M. R.
Filip
,
G. E.
Eperon
,
H. J.
Snaith
, and
F.
Giustino
,
Nat. Commun.
5
,
5757
(
2014
).
38.
M.
Nabi
and
D. C.
Gupta
,
Sci. Rep.
11
,
12945
(
2021
).
39.
C. J.
Bartel
,
J. M.
Clary
,
C.
Sutton
,
D.
Vigil-Fowler
,
B. R.
Goldsmith
,
A. M.
Holder
, and
C. B.
Musgrave
,
J. Am. Chem. Soc.
142
,
5135
(
2020
).
40.
S.
Khalfin
and
Y.
Bekenstein
,
Nanoscale
11
,
8665
(
2019
).
41.
Z.
Xiao
,
W.
Meng
,
J.
Wang
, and
Y.
Yan
,
ChemSusChem
9
,
2628
(
2016
).
42.
A. H.
Slavney
,
T.
Hu
,
A. M.
Lindenberg
, and
H. I.
Karunadasa
,
J. Am. Chem. Soc.
138
,
2138
(
2016
).
43.
E. T.
McClure
,
M. R.
Ball
,
W.
Windl
, and
P. M.
Woodward
,
Chem. Mater.
28
,
1348
(
2016
).
44.
S. J.
Zelewski
 et al.,
J. Mater. Chem. C
7
,
8350
(
2019
).
45.
F.
Giustino
and
H. J.
Snaith
,
ACS Energy Lett.
1
,
1233
(
2016
).
46.
M. R.
Filip
,
S.
Hillman
,
A. A.
Haghighirad
,
H. J.
Snaith
, and
F.
Giustino
,
J. Phys. Chem. Lett.
7
,
2579
(
2016
).
47.
W.
Ning
 et al.,
Adv. Funct. Mater.
29
,
1807375
(
2019
).
48.
G.
Volonakis
,
M. R.
Filip
,
A. A.
Haghighirad
,
N.
Sakai
,
B.
Wenger
,
H. J.
Snaith
, and
F.
Giustino
,
J. Phys. Chem. Lett.
7
,
1254
(
2016
).
49.
A.
Kojima
,
K.
Teshima
,
Y.
Shirai
, and
T.
Miyasaka
,
J. Am. Chem. Soc.
131
,
6050
(
2009
).
50.
A. H.
Slavney
,
L.
Leppert
,
D.
Bartesaghi
,
A.
Gold-Parker
,
M. F.
Toney
,
T. J.
Savenije
,
J. B.
Neaton
, and
H. I.
Karunadasa
,
J. Am. Chem. Soc.
139
,
5015
(
2017
).
51.
K.
Du
,
W.
Meng
,
X.
Wang
,
Y.
Yan
, and
D. B.
Mitzi
,
Angew. Chem. Int. Ed.
56
,
8158
(
2017
).
52.
A.
Karmakar
,
M. S.
Dodd
,
S.
Agnihotri
,
E.
Ravera
, and
V. K.
Michaelis
,
Chem. Mater.
30
,
8280
(
2018
).
53.
M. N.
Tran
,
I. J.
Cleveland
,
J. R.
Geniesse
, and
E. S.
Aydil
,
Mater. Horiz.
9
,
2191
2197
(
2022
).
54.
M. N.
Tran
,
I. J.
Cleveland
, and
E. S.
Aydil
,
ACS Appl. Electron. Mater.
4
,
4588
(
2022
).
55.
B.
Yang
 et al.,
Angew. Chem.
131
,
2300
(
2019
).
56.
F.
Wei
,
Z.
Deng
,
S.
Sun
,
N. T. P.
Hartono
,
H. L.
Seng
,
T.
Buonassisi
,
P. D.
Bristowe
, and
A. K.
Cheetham
,
Chem. Commun.
55
,
3721
(
2019
).
57.
G.
García-Espejo
,
D.
Rodríguez-Padrón
,
R.
Luque
,
L.
Camacho
, and
G.
de Miguel
,
Nanoscale
11
,
16650
(
2019
).
58.
Y.
Liu
,
L.
Zhang
,
M.
Wang
,
Y.
Zhong
,
M.
Huang
,
Y.
Long
, and
H.
Zhu
,
Mater. Today
28
,
25
(
2019
).
59.
Z.
Li
 et al.,
J. Mater. Chem. A
8
,
21780
(
2020
).
60.
S. M.
Rossnagel
,
J. Vac. Sci. Technol. A
21
,
S74
(
2003
).
61.
K.
Reichelt
and
X.
Jiang
,
Thin Solid Films
191
,
91
(
1990
).
62.
M. J.
Crane
,
D. M.
Kroupa
,
J. Y.
Roh
,
R. T.
Anderson
,
M. D.
Smith
, and
D. R.
Gamelin
,
ACS Appl. Energy Mater.
2
,
4560
(
2019
).
63.
M.
Liu
,
M. B.
Johnston
, and
H. J.
Snaith
,
Nature
501
,
395
(
2013
).
64.
M. N.
Tran
,
I. J.
Cleveland
,
G. A.
Pustorino
, and
E. S.
Aydil
,
J. Mater. Chem. A
9
,
13026
(
2021
).
65.
See supplementary material at https://doi.org/10.1116/6.0002475 for PLQY and film thickness calculations, additional XRD, absorption, PL, and EDS data.
66.
F.
Momma
and
F.
Izumi
,
J. Appl. Crystallogr.
44
,
1272
(
2011
).
67.
H.-C.
Gaebell
and
G.
Meyer
,
Z. Anorg. Allg. Chem.
513
,
15
(
1984
).
68.
S.
Hull
and
P.
Berastegui
,
J. Solid State Chem.
177
,
3156
(
2004
).
69.
B.
Brunetti
,
V.
Piacente
, and
P.
Scardala
,
J. Chem. Eng. Data
50
,
1801
(
2005
).
70.
A.
Drozdov
and
N.
Kuzmina
,
Comprehensive Inorganic Chemistry II
(
Elsevier
, Amsterdam, the Netherlands,
2013
), pp.
511
534
.
71.
72.
R.
Swanepoel
,
J. Phys. E: Sci. Instrum.
16
,
1214
(
1983
).

Supplementary Material

You do not currently have access to this content.