Surface coatings have been widely used to improve phosphor characteristics for the purpose of increasing luminescence intensity and protecting against degradation. In this study, an uncoated La2O2S:Eu3+ thin film is compared to films coated by graphene oxide, as prepared or annealed in an inert or reducing atmosphere. The characteristic red emission of Eu3+ ions was observed for all samples and attributed to 5D0-7F2 transitions, while no luminescence associated with graphene oxide was observed. The luminescence intensity from the as-coated sample and the one annealed in an inert Ar atmosphere was less, compared to the uncoated film, whereas the coated sample annealed in a reducing atmosphere (Ar/H2) had emission, which was of similar intensity to the uncoated sample. Its degradation, and that of the uncoated sample, were studied by recording Auger electron spectroscopy and cathodoluminescence measurements, simultaneously. During electron irradiation, the surface of the uncoated sample was converted to a much more luminescent layer as C and S were gradually removed from the surface. Auger electron spectroscopy measurements of the coated sample showed that even initially, it had almost no S on the surface. The loss of S was attributed to annealing in Ar/H2, where H2S gas may be produced as the phosphor was converted into La2O3. This La2O3 subsequently formed La(OH)3 due to its hydroscopic nature. Unlike the uncoated sample, from which C due to unintentional contamination was fairly easily removed from the surface, C on the surface of the coated sample became less but was resistant to removal, which was associated with the formation of CHLaO3 at the surface as suggested by x-ray diffraction. Although coating with graphene oxide did not result in chemically stable La2O2S:Eu3+ thin films, the cathodoluminescence intensity of both the uncoated and graphene oxide coated samples annealed in reducing atmosphere increased during electron beam exposure (with no change in the form of the emission spectra) so that such films may have potential cathodoluminescence applications.

1.
L.
Yu
,
F.
Li
, and
H.
Liu
,
J. Rare Earths
31
,
356
(
2013
).
2.
Q.
Dai
,
H.
Song
,
M.
Wang
,
X.
Bai
,
B.
Dong
,
R.
Qin
,
X.
Qu
, and
H.
Zhang
,
J. Phys. Chem. C
112
,
19399
(
2008
).
3.
G.
Jiang
,
X.
Wei
,
S.
Zhou
,
Y.
Chen
,
C.
Duan
, and
M.
Yin
,
J. Lumin.
152
,
156
(
2014
).
5.
N.
Hakmeh
,
C.
Chlique
,
O.
Merdrignac-Conanec
,
B.
Fan
,
F.
Cheviré
,
X.
Zhang
,
X.
Fan
, and
X.
Qiao
,
J. Solid State Chem.
226
,
255
(
2015
).
7.
L. J. B.
Erasmus
,
H. C.
Swart
, and
J. J.
Terblans
,
Appl. Surf. Sci.
487
,
41
(
2019
).
8.
G.
Jiang
,
X.
Wei
,
S.
Zhou
,
Y.
Chen
,
C.
Duan
,
M.
Yin
,
B.
Yang
, and
W.
Cao
,
Mater. Lett.
143
,
98
(
2015
).
9.
S. W.
Allison
and
G. T.
Gillies
,
Rev. Sci. Instrum.
68
,
2615
(
1997
).
10.
S. V.
Yap
,
R. M.
Ranson
,
W. M.
Cranton
, and
D.
Koutsogeorgis
,
Appl. Opt.
47
,
4895
(
2008
).
11.
A.
Yousif
,
R. M.
Jafer
,
S.
Som
,
M. M.
Duvenhage
,
E.
Coetsee
, and
H. C.
Swart
,
RSC Adv.
5
,
54115
(
2015
).
12.
J.
Zhuang
,
Z.
Xia
,
H.
Liu
,
Z.
Zhang
, and
L.
Liao
,
Appl. Surf. Sci.
257
,
4350
(
2011
).
14.
E.
Hasabeldaim
,
O. M.
Ntwaeaborwa
,
R. E.
Kroon
,
V.
Craciun
,
E.
Coetsee
, and
H. C.
Swart
,
Appl. Surf. Sci.
424
,
412
(
2017
).
15.
B. C.
Tladi
,
H. C.
Swart
,
Rudolph M.
Erasmus
, and
R. E.
Kroon
,
Mater. Res. Bull.
151
,
111806
(
2022
).
16.
S. N.
Ogugua
,
R. L.
Nyenge
,
P. T.
Sechogela
,
H. C.
Swart
, and
O. M.
Ntwaeaborwa
,
J. Vac. Sci. Technol. A
34
,
021520
(
2016
).
17.
L.
Chen
,
Pulsed Laser Deposition of Thin Films
, edited by
D. B.
Chrisey
and
G. K.
Hubler
(
Wiley
,
New York
,
1994
), p.
168
.
18.
M. N. R.
Ashfold
,
F.
Claeyssens
,
G. M.
Fuge
, and
S. J.
Henley
,
Chem. Soc. Rev.
33
,
23
(
2004
).
19.
20.
R.
Yoshimatsu
,
M.
Okada
,
T.
Ishigaki
,
S.
Watanabe
,
T.
Honma
, and
K.
Ohmi
,
Jpn. J. Appl. Phys.
56
,
032601
(
2017
).
22.
M.
Kaczkan
,
S.
Turczyński
,
D. A.
Pawlak
,
M.
Wencka
, and
M.
Malinowski
,
Opt. Mater.
58
,
412
(
2016
).
23.
R. M.
Jafer
,
H. C.
Swart
,
A.
Yousif
,
Vinod
Kumar
, and
E.
Coetsee
,
J. Lumin.
180
,
198
(
2016
).
24.
S. S.
Pitale
,
V.
Kumar
,
I. M.
Nagpure
,
O. M.
Ntwaeaborwa
,
E.
Coetsee
, and
H. C.
Swart
,
J. Appl. Phys.
109
,
013105
(
2011
).
25.
L.
Oosthuizen
,
H. C.
Swart
,
P. E.
Viljoen
,
P. H.
Holloway
, and
G. L. P.
Berning
,
Appl. Surf. Sci.
120
,
9
(
1997
).
26.
C. L.
Hedberg
,
Handbook of Auger Electron Spectroscopy
, 3rd ed. (
Physical Electronics
,
Eden Prairie
,
1995
).
27.
G. C.
Smith
,
Surface Analysis by Electron Spectroscopy
(
Plenum
,
New York
,
1994
).
28.
B. L.
Abrams
,
W. D.
Roos
,
P. H.
Holloway
, and
H. C.
Swart
,
Surf. Sci.
451
,
174
(
2000
).
29.
T. A.
Trottier
,
H. C.
Swart
,
S. L.
Jones
,
J. S.
Sebastian
, and
P. H.
Holloway
,
J. Soc. Inf. Disp.
4
,
351
(
1996
).
30.
J. J.
Dolo
,
H. C.
Swart
,
J. J.
Terblans
,
E.
Coetsee
,
M. S.
Dhlamini
,
O. M.
Ntwaeaborwa
, and
B. F.
Dejene
,
Phys. Stat. Sol. C
5
,
594
(
2008
).
31.
B. M.
Jaffar
,
H. C.
Swart
,
H. A. A.
Seed Ahmed
,
A.
Yousif
, and
R. E.
Kroon
,
Phys. B
574
,
411659
(
2019
).
32.
E.
Haibel
,
S.
Berendts
, and
D.
Walter
,
J. Therm. Anal. Calorim.
134
,
261
(
2018
).
33.
Y.
Long
,
J.
Yang
,
X.
Li
,
W.
Huang
,
Y.
Tang
, and
Y.
Zhang
,
J. Rare Earths
30
,
48
(
2012
).
34.
P.
Fleming
,
R. A.
Farrell
,
J. D.
Holmes
, and
M. A.
Morris
,
J. Am. Ceram. Soc.
93
,
1187
(
2010
).
35.
M.
Suzuki
,
M.
Kagawa
,
Y.
Syono
, and
T.
Hirai
,
J. Cryst. Growth
112
,
621
(
1991
).
36.
H. A.
Becerril
,
J.
Mao
,
Z.
Liu
,
R. M.
Stoltenberg
,
Z.
Bao
, and
Y.
Chen
,
ACS Nano
2
,
463
(
2008
).
37.
G.
Eda
,
G.
Fanchini
, and
M.
Chhowalla
,
Nat. Nanotechnol.
3
,
270
(
2008
).
38.
H.
Holloway
,
T. A.
Trottier
,
J.
Sebastian
,
S.
Jones
,
X. M.
Zhang
,
J. S.
Bang
,
B.
Abrams
,
W. J.
Thomes
, and
T. J.
Kim
,
J. Appl. Phys.
88
,
483
–488 (
2000
).
39.
M.
Xu
,
D.
Fujita
,
J.
Gao
, and
N.
Hanagata
,
ACS Nano
4
,
2937
(
2010
).
You do not currently have access to this content.