In this work, hafnium zirconium oxide (HZO)-based 100 × 100 nm2 ferroelectric tunnel junction (FTJ) devices were implemented on a 300 mm wafer platform, using a baseline 65 nm CMOS process technology. FTJs consisting of TiN/HZO/TiN were integrated in between metal 1 (M1) and via 1 (V1) layers. Cross-sectional transmission electron microscopy and energy dispersive x-ray spectroscopy analysis confirmed the targeted thickness and composition of the FTJ film stack, while grazing incidence, in-plane x-ray diffraction analysis demonstrated the presence of orthorhombic phase Pca21 responsible for ferroelectric polarization observed in HZO films. Current measurement, as a function of voltage for both up- and down-polarization states, yielded a tunneling electroresistance (TER) ratio of 2.28. The device TER ratio and endurance behavior were further optimized by insertion of thin Al2O3 tunnel barrier layer between the bottom electrode (TiN) and ferroelectric switching layer (HZO) by tuning the band offset between HZO and TiN, facilitating on-state tunneling conduction and creating an additional barrier layer in off-state current conduction path. Investigation of current transport mechanism showed that the current in these FTJ devices is dominated by direct tunneling at low electric field (E < 0.4 MV/cm) and by Fowler–Nordheim (F–N) tunneling at high electric field (E > 0.4 MV/cm). The modified FTJ device stack (TiN/Al2O3/HZO/TiN) demonstrated an enhanced TER ratio of ∼5 (2.2× improvement) and endurance up to 106 switching cycles. Write voltage and pulse width dependent trade-off characteristics between TER ratio and maximum endurance cycles (Nc) were established that enabled optimal balance of FTJ switching metrics. The FTJ memory cells also showed multi-level-cell characteristics, i.e., 2 bits/cell storage capability. Based on full 300 mm wafer statistics, a switching yield of >80% was achieved for fabricated FTJ devices demonstrating robustness of fabrication and programming approach used for FTJ performance optimization. The realization of CMOS-compatible nanoscale FTJ devices on 300 mm wafer platform demonstrates the promising potential of high-volume large-scale industrial implementation of FTJ devices for various nonvolatile memory applications.

1.
G. W.
Burr
 et al,
J. Vac. Sci. Technol. B
28
,
223
(
2010
).
2.
J. M.
Slaughter
 et al, “High density ST-MRAM technology,” in 2012
International Electronic Devices Meeting
, San Francisco, CA, 10–13 December 2012 (IEEE, San Francisco, CA,
2012
), p.
29
.
3.
S.
Ikeda
 et al,
Nat. Mater.
9
,
721
(
2010
).
4.
I.
Baek
, et al, “Multi-layer cross-point binary oxide resistive memory (OxRRAM) for post-NAND storage application,” in IEEE International Electron Devices Meeting, 5 December 2005, Washington, DC, IEDM Technical Digest (IEEE, Washington, D.C., 2005), pp. 750–753.
5.
J.
Müller
 et al, “Ferroelectric hafnium oxide: A CMOS-compatible and highly scalable approach to future ferroelectric memories,” in
2013 International Electronic Devices Meeting
, 9–11 December 2013, Washington, DC (IEEE, Washington, DC,
2013
), p.
10
.
6.
T. Y.
Tseng
and
S. M.
Sze
,
Nonvolatile Memories: Materials, Devices, and Applications
, Vol. 2 (
American Scientific
,
2012
), p.
447
.
7.
K.
Kim
and
G.
Koh
, “The prospect on semiconductor memory in nano era,” in
Proceedings of the 7th International Conference on Solid-State and Integrated Circuits Technology
, 18–21 October 2004, Beijing, China (IEEE, Beijing,
2004
), Vol. 1, p.
662
.
8.
G. W.
Burr
,
B. N.
Kurdi
,
J. C.
Scott
,
C. H.
Lam
,
K.
Gopalakrishnan
, and
R. S.
Shenoy
,
IBM J. Res. Dev.
52
,
449
(
2008
).
9.
E. Y.
Tsymbal
and
H.
Kohlstedt
,
Science
313
,
181
(
2006
).
10.
A.
Chanthbouala
 et al,
Nat. Nanotechnol.
7
,
101
(
2012
).
11.
M. Y.
Zhuravlev
,
R. F.
Sabirianov
,
S. S.
Jaswal
, and
E. Y.
Tsymbal
,
Phys. Rev. Lett.
94
,
246802
(
2005
).
12.
E. Y.
Tsymbal
and
A.
Gruverman
,
Nat. Mater.
12
,
602
(
2013
).
13.
H.
Ryu
,
H.
Wu
,
F.
Rao
, and
W.
Zhu
,
Sci. Rep.
9
,
1
(
2019
).
14.
Y. J.
Kim
 et al,
Sci. Rep.
6
,
1
(
2016
).
15.
Y.
Goh
and
S.
Jeon
,
Nanotechnology
29
,
335201
(
2018
).
16.
B.
Max
,
M.
Hoffmann
,
S.
Slesazeck
, and
T.
Mikolajick
,
IEEE J. Electron Devices
7
,
1175
(
2019
).
17.
T. S.
Böscke
,
J.
Müller
,
D.
Bräuhaus
,
U.
Schröder
, and
U.
Böttger
,
Appl. Phys. Lett.
99
,
102903
(
2011
).
18.
T.
Mittmann
,
F. P.
Fengler
,
C.
Richter
,
M. H.
Park
,
T.
Mikolajick
, and
U.
Schroeder
,
Microelectron. Eng.
178
,
48
(
2017
).
19.
T.
Ikuno
,
H.
Okamoto
,
Y.
Sugiyama
,
H.
Nakano
,
F.
Yamada
, and
I.
Kamiya
,
Appl. Phys. Lett.
99
,
023107
(
2011
).
20.
E. W.
Lim
and
R.
Ismail
,
Electronics
4
,
586
(
2015
).
21.
F. C.
Chiu
,
Adv. Mater. Sci. Eng.
2014
, 578168 (
2014
).
22.
M.
Pešić
 et al,
Adv. Funct. Mater.
26
,
4601
(
2016
).
23.
X. J.
Lou
,
Appl. Phys.
105
,
024101
(
2009
).
24.
B.
Max
,
M.
Hoffmann
,
S.
Slesazeck
, and
T.
Mikolajick
, “Ferroelectric tunnel junctions based on ferroelectric-dielectric Hf0.5Zr0.5O2/Al2O3 capacitor stacks,” in 2018 48th European Solid-State Device Research Conference (ESSDERC), 3–6 September 2018, Dresden, Germany (IEEE, Dresden, Germany, 2018), pp. 142–145.
25.
B.
Max
,
M.
Hoffmann
,
H.
Mulaosmanovic
,
S.
Slesazeck
, and
T.
Mikolajick
,
ACS Appl. Electron. Mater.
2
,
4023
(
2020
).
26.
Y. H.
Shin
,
I.
Grinberg
,
I. W.
Chen
, and
A. M.
Rappe
,
Nature
449
,
881
(
2007
).
27.
V.
Mukundan
 et al,
Appl. Phys. Lett.
117
,
262905
(
2020
).
You do not currently have access to this content.