In the present study, we propose the use of a light, inert carrier gas to support deposition uniformity and rate in continuous physical vapor deposition, in which closely spaced slots or nozzles are required to achieve a sufficiently high deposition rate. Interaction shocks between the emerging rarefied plumes cause undesired nonuniformities in the deposited coating. The present work evaluates the effect of adding a carrier gas on the interaction shock. We study the interaction between two sonic plumes consisting of a binary mixture, i.e., silver as coating material and helium as a light inert carrier gas, by direct simulation Monte Carlo. While the inlet Mach and Knudsen numbers were kept constant, the fraction of carrier gas was varied to single out the effect of species separation. The influence of rarefaction on species separation was also studied. Species separation produces a high carrier-gas fraction in the periphery and an accumulation of the heavier species in the jet core. The resulting change in the speed of sound alters the local expansion characteristics and, thus, shifts the shock location and weakens the shock. These phenomena intensify with the degree of rarefaction. It is shown that adding a light carrier gas increases deposition rate may enhance uniformity and reduce stray deposition.

1.
H.
Liu
,
Y.
Zhu
,
Q.
Meng
,
X.
Lu
,
S.
Kong
,
Z.
Huang
,
P.
Jiang
, and
X.
Bao
,
Nano Res.
10
,
643
(
2017
).
2.
A.
Drize
and
A.
Settaouti
,
Ind. J. Pure Appl. Phys.
56
,
434
(
2018
).
3.
A.
Torgovkin
,
S.
Chaudhuri
,
A.
Ruhtinas
,
M.
Lahtinen
,
T.
Sajavaara
, and
I.
Maasilta
,
Supercond. Sci. Technol.
31
,
055017
(
2018
).
4.
R.
Dorsman
,
C.
Kleijn
,
J.
Velthuis
,
J.
Zijp
, and
A.
van Mol
,
J. Vac. Sci. Technol. A
25
,
474
(
2007
).
5.
K.
Bobzin
,
R. P.
Brinkmann
,
T.
Mussenbrock
,
N.
Bagcivan
,
R. H.
Brugnara
,
M.
Schäfer
, and
J.
Trieschmann
,
Surf. Coat. Technol.
237
,
176
(
2013
).
6.
M. C.
Schwille
,
T.
Schössler
,
J.
Barth
,
M.
Knaut
,
F.
Schön
,
A.
Höchst
,
M.
Oettel
, and
J. W.
Bartha
,
J. Vac. Sci. Technol. A
35
,
01B118
(
2017
).
7.
S.
Thiruppathiraj
,
S.-M.
Ryu
,
J.
Uh
, and
L. L.
Raja
,
J. Vac. Sci. Technol. A
39
,
052404
(
2021
).
8.
J. F.
Groves
,
S.
Jones
,
T.
Globus
,
L.
Hsiung
, and
H.
Wadley
,
J. Electrochem. Soc.
142
,
L173
(
1995
).
9.
D. D.
Hass
and
B.
Gogia
, U.S. patent App. 13/178, 135 (2013).
10.
A.
Moarrefzadeh
and
M.
Branch
,
WSEAS Trans. Appl. Theor. Mech.
7
,
106
(
2012
).
11.
T. M.
Rodgers
,
H.
Zhao
, and
H. N.
Wadley
,
J. Vac. Sci. Technol. A
33
,
05E118
(
2015
).
12.
T. M.
Rodgers
,
H.
Zhao
, and
H. N.
Wadley
,
J. Vac. Sci. Technol. A
33
,
061509
(
2015
).
13.
N.
Bykov
and
V.
Zakharov
,
Phys. Fluids
32
,
067109
(
2020
).
14.
N.
Wei
,
Y.
Feng
,
W.
Sun
,
Y.
Cheng
,
M.
Dong
,
Y.
Song
,
C.
Wu
,
G.
Liu
, and
Y.
Qiu
,
Vacuum
189
,
110277
(
2021
).
15.
E.
Zoestbergen
,
T.
Maalman
,
C.
Commandeur
, and
M.
Goodenough
,
Surf. Coat. Technol.
218
,
108
(
2013
).
16.
J. E.
Vesper
,
C. S.
Obiji
,
R.
Westerwaal
,
C.
Boelsma
,
S.
Kenjereš
, and
C. R.
Kleijn
,
Appl. Therm. Eng.
195
,
117099
(
2021
).
17.
P.
Banaszak
,
D.
Marneffe
,
E.
Silberberg
, and
L.
Vanhee
, “Industrial vapour generator for the deposition of an alloy coating onto a metal strip,”
US Patent App.
,
12/681
,
969
(Google Patents, 2011).
18.
A.
Venkattraman
and
A. A.
Alexeenko
,
Vacuum
86
,
1748
(
2012
).
19.
A.
Venkattraman
and
A. A.
Alexeenko
,
J. Vac. Sci. Technol. A
28
,
916
(
2010
).
20.
J. E.
Vesper
,
T. J.
Broeders
,
J.
Batenburg
,
D. E.
van Odyck
, and
C. R.
Kleijn
,
Phys. Fluids
33
,
086103
(
2021
).
21.
T.
Dutta
,
K.
Sinhamahapatra
, and
S.
Bandyopadhyay
,
Int. J. Refrig.
34
,
2118
(
2011
).
22.
S.
Mohammadi
and
F.
Farhadi
,
Sep. Purif. Technol.
138
,
177
(
2014
).
23.
J.
Yun
,
Y.
Kim
, and
S.
Yu
,
Int. J. Heat Mass Transfer
126
,
353
(
2018
).
24.
S.
Kuwatani
,
S.
Watanabe
, and
N.
Ono
,
J. Therm. Sci. Technol.
7
,
31
(
2012
).
25.
T.
Saiki
,
N.
Ono
,
S.
Matsumoto
, and
S.
Watanabe
,
Int. J. Heat Mass Transfer
163
,
120394
(
2020
).
26.
M.
Sabouri
and
M.
Darbandi
,
Phys. Fluids
31
,
042004
(
2019
).
27.
T.
Wu
and
A.
Firoozabadi
,
J. Phys. Chem. C
122
,
20727
(
2018
).
28.
A. D.
Strongrich
,
A. J.
Pikus
,
I. B.
Sebastiao
,
D.
Peroulis
, and
A. A.
Alexeenko
, “Low-pressure gas sensor exploiting the Knudsen thermal force: DSMC modeling and experimental validation,” in 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, Shanghai, China, 2016), pp. 828–831.
29.
R.
Gatignol
and
C.
Croizet
,
Phys. Fluids
29
,
042001
(
2017
).
30.
A.
Lotfian
and
E.
Roohi
,
Int. Commun. Heat Mass Transfer
121
,
105061
(
2021
).
31.
H.
Sugimoto
,
S.
Takata
, and
S.
Kosuge
,
Rarefied Gas Dyn.
1
,
1158
(
2007
).
32.
S.
Takata
,
H.
Sugimoto
, and
S.
Kosuge
,
Eur. J. Mech. B
26
,
155
(
2007
).
33.
S.
Nakaye
and
H.
Sugimoto
,
Vacuum
125
,
154
(
2016
).
34.
H.
Trinks
, “Gas species separation effects in exhaust plumes,” in 5th Joint Thermophysics and Heat Transfer Conference (AIAA, Reston, VA, 1990), p. 1734.
37.
F. S.
Sherman
,
Phys. Fluids
8
,
773
(
1965
).
38.
D. E.
Rothe
,
Phys. Fluids
9
,
1643
(
1966
).
39.
A.
Ramos
,
G.
Tejeda
,
J.
Fernández
, and
S.
Montero
,
J. Phys. Chem. A
113
,
8506
(
2009
).
40.
V. V.
Riabov
,
J. Thermophys. Heat Transfer
17
,
526
(
2003
).
41.
V.
Kosyanchuk
and
A.
Yakunchikov
,
Phys. Fluids
33
,
082007
(
2021
).
42.
J.
Wu
,
G.
Cai
,
B.
He
, and
H.
Zhou
,
Vacuum
128
,
166
(
2016
).
43.
D. E.
Rothe
, Technical Report (Institute for Aerospace Studies, Toronto University, Ontario, 1966).
44.
A.
Ramos
,
G.
Tejeda
,
J.
Fernández
, and
S.
Montero
,
J. Phys. Chem. A
114
,
7761
(
2010
).
45.
G.
Bird
, Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Oxford University Press, Oxford, 1994).
46.
K.
Koura
and
H.
Matsumoto
,
Phys. Fluids A
4
,
1083
(
1992
).
47.
J.
Fan
,
I. D.
Boyd
, and
C.
Shelton
,
J. Vac. Sci. Technol. A
18
,
2937
(
2000
).
48.
P.
Fialho
,
J.
Fareleira
,
M.
Ramires
, and
C. A.
Nieto de Castro
,
Ber. Bunsenges. Phys. Chem.
97
,
1487
(
1993
).
49.
E.
Roohi
and
S.
Stefanov
,
Phys. Rep.
656
,
1
(
2016
).
50.
C.
White
,
M. K.
Borg
,
T. J.
Scanlon
,
S. M.
Longshaw
,
B.
John
,
D.
Emerson
, and
J. M.
Reese
,
Comput. Phys. Commun.
224
,
22
(
2018
).
51.
D.
Valougeorgis
,
M.
Vargas
, and
S.
Naris
,
Vacuum
128
,
1
(
2016
).
52.
C.
Cai
and
I. D.
Boyd
,
J. Spacecr. Rockets
44
,
619
(
2007
).
53.
S.
Cai
,
C.
Cai
, and
J.
Li
,
Phys. Fluids
30
,
127101
(
2018
).
54.
R.
Vos
and
S.
Farokhi
,
Introduction to Transonic Aerodynamics
(
Springer
,
Dordrecht, The Netherlands
,
2015
), Vol. 110.
55.
I. W.
Kokkinakis
,
D.
Drikakis
,
K.
Ritos
, and
S. M.
Spottswood
,
Phys. Fluids
32
,
066107
(
2020
).
56.
O.
Tumuklu
and
D. A.
Levin
, “On the temporal evolution in laminar separated boundary layer shock-interaction flows using DSMC,” in 55th AIAA Aerospace Sciences Meeting (AIAA, Reston, VA, 2017), p. 1614.
57.
S.
Chapman
,
Proc. Roy. Soc. Lond. A
93
,
1
(
1916
).
You do not currently have access to this content.