Silicon nanostructures with high aspect-ratio (AR) features have played an important role in many fields. In this study, we report the fabrication of high AR silicon nanostructures using an inductively coupled plasma reactive ion etching (ICP-RIE) process by controlling the voltage bias at the substrate. The results show that by reducing the radio frequency (RF) bias power to 10 W, the etch selectivity of silicon to photoresist can be enhanced up to 36 times. Using the photoresist as a mask, this process can fabricate 300 nm-period one-dimensional (1D) grating structures with a height up to 807 nm, an improvement of 3.75-fold compared with structures fabricated by normal bias power. Furthermore, the analysis of the etch rate shows that the etch rate decreases over time in 1D gratings but remains constant in 2D pillar arrays, which can be attributed to the removal of the sidewall passivation. By including an O2 ICP-RIE step to remove the remaining polymer mask, the highest AR of 2D pillar structures that can be achieved is 8.8. The optical characterization of the fabricated structures demonstrates effective antireflection properties, where the measurements show that the reflectivity can be suppressed from 35% to 0.01% near normal incidence and 35% to 2.4% at 65° incident angle. The demonstrated low-RF power ICP-RIE process can create high AR nanostructures without the need for an inorganic mask and can find applications in integrated circuits, photonics, and functional nanostructures.

1.
H.
Iwai
and
S.
Ohmi
,
Microelectron. Reliab.
42
,
465
(
2002
).
2.
A. S.
Oates
, in
Reliability Characterisation of Electrical and Electronic Systems
, edited by
J.
Swingler
(
Woodhead Publishing
,
Oxford
,
2015
), pp.
115
141
.
3.
R. W.
Dutton
,
IEEE Trans. Electron Devices
30
,
968
(
1983
).
4.
G.
Roelkens
,
D.
Vermeulen
,
S.
Selvaraja
,
R.
Halir
,
W.
Bogaerts
, and
D.
Van Thourhout
,
IEEE J. Sel. Top. Quantum Electron.
17
,
571
(
2011
).
5.
W.-W.
Shen
and
K.-N.
Chen
,
Nanoscale Res. Lett.
12
,
56
(
2017
).
6.
M.
Tilli
,
M.
Paulasto-Krockel
,
M.
Petzold
,
H.
Theuss
,
T.
Motooka
, and
V.
Lindroos
,
Handbook of Silicon Based MEMS Materials and Technologies
(
Elsevier
,
New York
,
2020
).
7.
A. M.
Hynes
,
H.
Ashraf
,
J. K.
Bhardwaj
,
J.
Hopkins
,
I.
Johnston
, and
J. N.
Shepherd
,
Sens. Actuators, A
74
,
13
(
1999
).
8.
P.
Ruther
,
S.
Herwik
,
S.
Kisban
,
K.
Seidl
, and
O.
Paul
,
IEEJ Trans. Electr. Electron. Eng.
5
,
505
(
2010
).
9.
G.
Zhanshe
,
C.
Fucheng
,
L.
Boyu
,
C.
Le
,
L.
Chao
, and
S.
Ke
,
Microsyst. Technol.
21
,
2053
(
2015
).
10.
G. T.
Reed
and
A. P.
Knights
,
Silicon Photonics: An Introduction
(
John Wiley & Sons
,
New York
,
2004
).
11.
B.
Jalali
and
S.
Fathpour
,
J. Lightwave Technol.
24
,
4600
(
2006
).
12.
R.
Soref
,
IEEE J. Sel. Top. Quantum Electron.
12
,
1678
(
2006
).
13.
J.
Leuthold
,
C.
Koos
, and
W.
Freude
,
Nat. Photonics
4
,
535
(
2010
).
14.
D.
Thomson
 et al.,
J. Opt.
18
,
073003
(
2016
).
15.
L.
Ann Bauer
,
N. S.
Birenbaum
, and
G. J.
Meyer
,
J. Mater. Chem.
14
,
517
(
2004
).
16.
S.
Merlo
,
G.
Barillaro
,
F.
Carpignano
,
S.
Surdo
,
L. M.
Strambini
,
A.
Montecucco
,
V.
Leva
, and
G.
Mazzini
,
IEEE J. Sel. Top. Quantum Electron.
18
,
1215
(
2012
).
17.
F. A.
Harraz
,
Sens. Actuators, B
202
,
897
(
2014
).
18.
D.
Brodoceanu
,
R.
Elnathan
,
B.
Prieto-Simón
,
B.
Delalat
,
T.
Guinan
,
E.
Kroner
,
N. H.
Voelcker
, and
T.
Kraus
,
ACS Appl. Mater. Interfaces
7
,
1160
(
2015
).
19.
A.
Irrera
 et al.,
ACS Photonics
5
,
471
(
2018
).
20.
X.
Li
,
Curr. Opin. Solid State Mater. Sci.
16
,
71
(
2012
).
21.
S.-H.
Baek
,
H. S.
Jang
, and
J. H.
Kim
,
Curr. Appl. Phys.
11
,
S30
(
2011
).
22.
J. R.
Maiolo
,
B. M.
Kayes
,
M. A.
Filler
,
M. C.
Putnam
,
M. D.
Kelzenberg
,
H. A.
Atwater
, and
N. S.
Lewis
,
J. Am. Chem. Soc.
129
,
12346
(
2007
).
23.
S.
Yadavali
,
D.
Lee
, and
D.
Issadore
,
Sci. Rep.
9
,
12213
(
2019
).
24.
F.
Laermer
and
A.
Schilp
, US5501893A (26 March 1996).
25.
F.
Laermer
and
A.
Urban
,
Microelectron. Eng.
67-68
,
349
(
2003
).
26.
D.
Dimova-Malinovska
,
M.
Sendova-Vassileva
,
N.
Tzenov
, and
M.
Kamenova
,
Thin Solid Films
297
,
9
(
1997
).
27.
X.
Li
and
P. W.
Bohn
,
Appl. Phys. Lett.
77
,
2572
(
2000
).
28.
Z.
Huang
,
N.
Geyer
,
P.
Werner
,
J.
de Boor
, and
U.
Gösele
,
Adv. Mater.
23
,
285
(
2011
).
29.
A.
Mallavarapu
,
P.
Ajay
, and
S. V.
Sreenivasan
,
Nano Lett.
20
,
7896
(
2020
).
30.
A. R.
Bruccoleri
,
R. K.
Heilmann
, and
M. L.
Schattenburg
,
J. Vac. Sci. Technol. B
34
,
06KD02
(
2016
).
31.
Y.-A.
Chen
,
I.-T.
Chen
, and
C.-H.
Chang
,
J. Vac. Sci. Technol. B
37
,
061606
(
2019
).
32.
M. A.
Blauw
,
T.
Zijlstra
, and
E.
van der Drift
,
J. Vac. Sci. Technol. B
19
,
2930
(
2001
).
33.
M. A.
Vyvoda
,
H.
Lee
,
M. V.
Malyshev
,
F. P.
Klemens
,
M.
Cerullo
,
V. M.
Donnelly
,
D. B.
Graves
,
A.
Kornblit
, and
J. T. C.
Lee
,
J. Vac. Sci. Technol. A
16
,
3247
(
1998
).
34.
L.
Xie
,
T. X.
Zhou
,
R. J.
Stöhr
, and
A.
Yacoby
,
Adv. Mater.
30
,
1705501
(
2018
).
35.
P.
Vukusic
and
J. R.
Sambles
,
Nature
424
,
852
(
2003
).
36.
Y.
Kanamori
,
M.
Sasaki
, and
K.
Hane
,
Opt. Lett.
24
,
1422
(
1999
).
37.
P.
Lalanne
and
G. M.
Morris
,
Nanotechnology
8
,
53
(
1997
).
38.
K.-C.
Park
,
H. J.
Choi
,
C.-H.
Chang
,
R. E.
Cohen
,
G. H.
McKinley
, and
G.
Barbastathis
,
ACS Nano
6
,
3789
(
2012
).
39.
Q.
Yang
,
X. A.
Zhang
,
A.
Bagal
,
W.
Guo
, and
C.-H.
Chang
,
Nanotechnology
24
,
235202
(
2013
).
40.
A. R.
Parker
and
C. R.
Lawrence
,
Nature
414
,
33
(
2001
).
41.
Y.-A.
Chen
,
K.-C.
Chien
,
I.-T.
Chen
, and
C.-H.
Chang
,
Micro Nano Eng.
14
,
100115
(
2022
).
42.
Y.-A.
Chen
,
S. V.
Naidu
,
Z.
Luo
, and
C.-H.
Chang
,
J. Appl. Phys.
126
,
063101
(
2019
).
43.
A.
Lafuma
and
D.
Quéré
,
Nat. Mater.
2
,
457
(
2003
).
44.
A.
Bagal
and
C.-H.
Chang
,
Opt. Lett.
38
,
2531
(
2013
).
45.
I.
Wathuthanthri
,
W.
Mao
, and
C.-H.
Choi
,
Opt. Lett.
36
,
1593
(
2011
).
46.
R. J.
Hoekstra
,
M. J.
Kushner
,
V.
Sukharev
, and
P.
Schoenborn
,
J. Vac. Sci. Technol. B
16
,
2102
(
1998
).
47.
A. P.
Mahorowala
and
H. H.
Sawin
,
J. Vac. Sci. Technol. B
20
,
1055
(
2002
).
You do not currently have access to this content.