To accomplish a high-temperature operation of GaN/InGaN multiple-quantum-well (MQW) UV photodetectors (UV-PDs), the investigation of device performances at high-temperature regimes is truly essential. Therefore, in the present work, GaN/InGaN MQW-based UV-PDs on sapphire are fabricated and their photovoltaic and carrier transit time characteristics are investigated at different temperatures. Our results suggest that the temperature has a strong impact on various photovoltaic properties: we noticed an increase in short circuit current density and a significant lowering in open circuit voltage and power conversion efficiency when the ambient temperature increases from 25 to 300 °C. The time-dependent photo-response characteristics at different temperatures suggest that both the rise time and fall time are reduced at high temperatures, indicating the thermal activation of localized charges at an exacerbated temperature.

1.
L.
Yang
 et al,
Appl. Phys. Lett.
120
,
091103
(
2022
).
2.
P.
Dalapati
,
K.
Yamamoto
,
T.
Egawa
, and
M.
Miyoshi
,
Appl. Phys. Lett.
118
,
021101
(
2021
).
3.
P.
Dalapati
,
K.
Yamamoto
,
T.
Egawa
, and
M.
Miyoshi
,
Sens. Actuators A
331
,
113050
(
2021
).
4.
S.
Kaushik
,
S.
Sorifi
, and
R.
Singh
,
Photonics Nanostruct. Fundam. Appl.
43
,
100887
(
2021
).
5.
A.
Caria
,
C.
De Santi
,
E.
Dogmus
,
F.
Medjdoub
,
E.
Zanoni
,
G.
Meneghesso
, and
M.
Meneghini
,
Electronics
9
,
1840
(
2020
).
6.
L.
Sang
,
M.
Liao
,
Y.
Koide
, and
M.
Sumiya
,
Appl. Phys. Lett.
99
,
031115
(
2011
).
7.
P.
Dalapati
,
K.
Yamamoto
,
T.
Kubo
,
T.
Egawa
, and
M.
Miyoshi
,
Optik
245
,
167691
(
2021
).
8.
X.
Chen
 et al,
ACS Appl. Mater. Interfaces
9
,
36997
(
2017
).
9.
A. Y.
Polyakov
,
V. I.
Nikolaev
,
E. B.
Yakimov
,
F.
Ren
,
S. J.
Pearton
, and
J.
Kim
,
J. Vac. Sci. Technol. A
40
,
020804
(
2022
).
10.
M.
Reddeppa
,
B. G.
Park
,
D. J.
Nam
,
C.
Thota
,
N. H.
Bak
,
K. S.
Pasupuleti
,
Y. H.
Kim
,
S. G.
Kim
, and
M. D.
Kim
,
ACS Appl. Nano Mater.
5
,
7418
(
2022
).
11.
M.
Reddeppa
,
C.
Thota
,
D. J.
Nam
,
H.
Woo
,
S. G.
Kim
, and
M. D.
Kim
,
Appl. Phys. Lett.
119
,
023901
(
2021
).
12.
A.
Asgari
and
K.
Khalili
,
Sol. Energy Mater. Sol. Cells
95
,
3124
(
2011
).
13.
X.
Huang
 et al,
ACS Photonics
6
,
2096
(
2019
).
14.
P.
Dalapati
,
A.
Almalki
,
S.
Alhassan
,
S.
Alotaibi
,
M. A.
Huwayz
,
T.
Nakabayashi
,
T.
Egawa
,
M.
Miyoshi
, and
M.
Henini
,
Sens. Actuators A
347
,
113935
(
2022
).
15.
J.
Bai
,
Y. P.
Gong
,
Z.
Li
,
Y.
Zhang
, and
T.
Wang
,
Sol. Energy Mater. Sol. Cells
175
,
47
(
2018
).
16.
J.
Bai
,
M.
Athanasiou
, and
T.
Wang
,
Sol. Energy Mater. Sol. Cells
145
,
226
(
2016
).
17.
S. H.
Baek
,
H. J.
Lee
, and
S. N.
Lee
,
Sci. Rep.
9
,
13654
(
2019
).
18.
R.
Dahal
,
B.
Pantha
,
J.
Li
,
J. Y.
Lin
, and
H. X.
Jiang
,
Appl. Phys. Lett.
94
,
063505
(
2009
).
19.
M.
Miyoshi
,
T.
Nakabayashi
,
K.
Yamamoto
,
P.
Dalapati
, and
T.
Egawa
,
AIP Adv.
11
,
095208
(
2021
).
20.
P.
Dalapati
,
K.
Yamamoto
,
T.
Egawa
, and
M.
Miyoshi
,
Opt. Lett.
46
,
3568
(
2021
).
21.
B.
Chouchen
,
M. H.
Gazzah
,
A.
Bajahzar
, and
H.
Belmabrouk
,
AIP Adv.
9
,
045313
(
2019
).
22.
R.
Belghouthi
and
M.
Aillerie
,
Energy Procedia
157
,
793
(
2019
).
23.
J. R.
Lang
,
N. G.
Young
,
R. M.
Farrell
,
Y. R.
Wu
, and
J. S.
Speck
,
Appl. Phys. Lett.
101
,
181105
(
2012
).
24.
P.
Singh
and
N. M.
Ravindra
,
Sol. Energy Mater. Sol. Cells
101
,
36
(
2012
).
25.
F.
Binet
,
J. Y.
Duboz
,
E.
Rosencher
,
F.
Scholz
, and
V.
Härle
,
Appl. Phys. Lett.
69
,
1202
(
1996
).
26.
P.
Dalapati
,
T.
Nakabayashi
,
K.
Yamamoto
,
T.
Egawa
, and
M.
Miyoshi
,
Opt. Mater.
127
,
112284
(
2022
).
27.
Y.
Yang
 et al,
Appl. Phys. Lett.
118
,
053501
(
2021
).
28.
Z.
Zhao
,
D.
Wu
,
J.
Guo
,
E.
Wu
,
C.
Jia
,
Z.
Shi
,
Y.
Tian
,
X.
Li
, and
Y.
Tian
,
J. Mater. Chem. C
7
,
12121
(
2019
).
29.
M.
Sulaman
 et al,
ACS Appl. Mater. Interfaces
12
,
26153
(
2020
).
30.
M.
Sulaman
 et al,
Adv. Funct. Mater.
32
,
2201527
(
2022
).
31.
A.
Imran
,
M.
Sulaman
,
M.
Yousaf
,
M. A.
Anwar
,
M.
Qasim
,
G.
Dastgeer
,
K. A. A.
Min-Dianey
,
B.
Wang
, and
X.
Wang
,
Adv. Mater. Interfaces
9
,
2200105
(
2022
).
32.
A.
Imran
 et al,
Surf. Interfaces
29
,
101772
(
2022
) ;
M.
Garg
,
B. R.
Tak
,
V. R.
Rao
, and
R.
Singh
,
ACS Appl. Mater. Interfaces
11
,
12017
(
2019
).
[PubMed]
33.
D.
Guo
 et al,
ACS Photonics
5
,
4810
(
2018
).
34.
H.
Zhou
,
L.
Cong
,
J.
Ma
,
B.
Li
,
M.
Chen
,
H.
Xu
, and
Y.
Liu
,
J. Mater. Chem. C
7
,
13149
(
2019
).
35.
P.
Pataniya
,
C. K.
Zankat
,
M.
Tannarana
,
C. K.
Sumesh
,
S.
Narayan
,
G. K.
Solanki
,
K. D.
Patel
,
V. M.
Pathak
, and
P. K.
Jha
,
ACS Appl. Nano Mater.
2
,
2758
(
2019
).
36.
M.
Kumar
,
V.
Bhatt
,
A. C.
Abhyankar
,
J. H.
Yun
, and
H. J.
Jeong
,
Int. J. Hydrogen Energy
45
,
15011
(
2020
).
37.
X.
Tang
,
F.
Ji
,
H.
Wang
,
Z.
Jin
,
H.
Li
,
B.
Li
, and
J.
Wang
,
Appl. Phys. Lett.
119
,
013503
(
2021
).
38.
H. Y.
Chen
,
R. S.
Chen
,
N. K.
Rajan
,
F. C.
Chang
,
L. C.
Chen
,
K. H.
Chen
,
Y. J.
Yang
, and
M. A.
Reed
,
Phys. Rev. B
84
,
205443
(
2011
).
39.
J.
Mao
,
Y.
Yu
,
L.
Wang
,
X.
Zhang
,
Y.
Wang
,
Z.
Shao
, and
J.
Jie
,
Adv. Sci.
3
,
1600018
(
2016
).
40.
L. Z.
Hao
,
W.
Gao
,
Y. J.
Liu
,
Y. M.
Liu
,
Z. D.
Han
,
Q. Z.
Xue
, and
J.
Zhu
,
Phys. Chem. Chem. Phys.
18
,
1131
(
2016
).
41.
See the supplementary material at https://www.scitation.org/doi/suppl/10.1116/6.0002101 for the X-ray diffraction characteristics (2θ-ω scan) of the epilayer.

Supplementary Material

You do not currently have access to this content.