The dependence of the electron emission current density on the excitation power density of a Cs/O-activated negative electron affinity (NEA) InGaN photocathode was investigated. The emission current density of the NEA-InGaN photocathode increased monotonically with the excitation power density in the measured range. The emission current density reached 5.6 × 103 A/cm2 at an excitation power density of 2.6 × 106 W/cm2. Using the electron thermal energy estimated by comparing simulation and experimental results [D. Sato, H. Shikano, A. Koizumi, T. Nishitani, Y. Honda, and H. Amano, J. Vac. Sci. Technol. B 39, 062209 (2021)], the reduced brightness of 4 × 108 A/m2 sr V was derived.

1.
M. S.
Bronsgeest
,
J. E.
Barth
,
L. W.
Swanson
, and
P.
Kruit
,
J. Vac. Sci. Technol. B
26
,
949
(
2008
).
2.
W. E.
Spicer
,
Appl. Phys.
12
,
115
(
1977
).
3.
W. E.
Spicer
,
Phys. Rev.
112
,
114
(
1958
).
4.
T.
Nishitani
,
Y.
Arakawa
,
S.
Noda
,
A.
Koizumi
,
D.
Sato
,
H.
Shikano
,
H.
Iijima
,
H.
Amano
, and
Y.
Honda
, “Scanning electron microscope imaging by selective e-beaming using photoelectron beams from semiconductor photocathodes,”
J. Vac. Sci Technol. B
(submitted).
5.
J.
Grames
,
R.
Suleiman
,
P. A.
Adderley
,
J.
Clark
,
J.
Hansknecht
,
D.
Machie
,
M.
Poelker
, and
M. L.
Stutzman
,
Phys. Rev. Accel. Beams
14
,
043501
(
2011
).
6.
I. V.
Bazarov
,
B. M.
Dunham
,
Y.
Li
,
X.
Liu
,
D. G.
Ouzounov
,
C. K.
Sinclair
,
F.
Hannon
, and
T.
Miyajima
,
J. Appl. Phys.
103
,
054901
(
2008
).
7.
K.
Aulenbacher
,
J.
Schuler
,
D. v.
Harrach
,
E.
Reichert
,
J.
Röthgen
,
A.
Subashev
,
V.
Tioukine
, and
Y.
Yashin
,
J. Appl. Phys.
92
,
7536
(
2002
).
8.
H.
Morishita
,
T.
Ohshima
,
M.
Kuwahara
,
Y.
Ose
, and
T.
Agemura
,
J. Appl. Phys.
127
,
164902
(
2020
).
9.
H.
Morishita
,
T.
Ohshima
,
K.
Otsuga
,
M.
Kuwahara
,
T.
Agemura
, and
Y.
Ose
,
Ultramicroscopy
230
,
113386
(
2021
).
10.
H.
Yasuda
,
T.
Nishitani
,
S.
Ichikawa
,
S.
Hatanaka
,
Y.
Honda
, and
H.
Amano
,
Quantum Beam Sci.
5
,
5
(
2021
).
11.
T.
Nishitani
,
T.
Maekawa
,
M.
Tabuchi
,
T.
Meguro
,
Y.
Honda
, and
H.
Amano
,
Proc. SPIE
9363
,
93630T
(
2015
).
12.
D.
Sato
,
T.
Nishitani
,
Y.
Honda
, and
H.
Amano
,
Jpn. J. Appl. Phys.
55
,
05FH05
(
2016
).
13.
D.
Sato
,
A.
Honda
,
A.
Koizumi
,
T.
Nishitani
,
Y.
Honda
, and
H.
Amano
,
Microelectron. Eng.
223
,
111229
(
2020
).
14.
N.
Takahashi
,
S.
Tanaka
,
M.
Ichikawa
,
Y. Q.
Cai
, and
M.
Kamada
,
J. Phys. Soc. Jpn.
66
,
2798
(
1997
).
15.
T.
Nishitani
,
M.
Tabuchi
,
K.
Motoki
,
T.
Takashima
,
A.
Era
, and
Y.
Takeda
,
J. Phys. Conf. Ser.
298
,
012010
(
2011
).
16.
D.
Sato
,
H.
Shikano
,
A.
Koizumi
,
T.
Nishitani
,
Y.
Honda
, and
H.
Amano
,
J. Vac. Sci Technol. B
39
,
062209
(
2021
).
17.
A.
Herrera-Gómez
,
G.
Vergara
, and
W. E.
Spicer
,
J. Appl. Phys.
79
,
7318
(
1996
).
18.
S. A.
Rozhkov
,
V. V.
Bakin
,
D. V.
Gorshkov
,
S. N.
Kosolobov
, and
H. E.
Scheibler
,
J. Phys. Conf. Ser.
1199
,
012031
(
2019
).
19.
B. I.
Reznikov
and
A. V.
Subashiev
,
Semiconductors
32
,
1006
(
1998
).
20.
J. E.
Schneider
 et al,
J. Vac. Sci. Technol. B
16
,
3192
(
1998
).
21.
A. H. V.
van Veen
,
C. W.
Hagen
,
J. E.
Barth
, and
P.
Kruit
,
J. Vac. Sci. Technol. B
19
,
2038
(
2001
).
You do not currently have access to this content.