Electron beam-induced deposition (EBID) is an effective technique for directly fabricating materials with arbitrary shapes on substrates. EBID techniques have mostly been applied to the deposition of metals; however, only a few methods have been applied to metal oxides. As an application of metal oxides in EBID, I report on the fabrication of hafnium oxide (HfO2) films and their structural analysis using transmission electron microscopy techniques. Hafnium tetra-tert-butoxide [Hf(OC4H9)4] was supplied as a precursor from the gas injection system to deposit HfO2 films on silicon substrates. As a result of structural analysis, the grain size of the HfO2 film was less than 1 nm and residual carbon in the film remained. Although deposition conditions to reduce or remove residual carbon in the films need to be improved, the results demonstrate the applicability of one method of HfO2 fabrication and the potential of the EBID method for various metal oxide depositions.

1.
A. G.
Baker
and
W. C.
Morris
,
Rev. Sci. Instrum.
32
,
458
(
1961
).
2.
S. J.
Randolph
,
J. D.
Fowlkes
, and
P. D.
Rack
,
Crit. Rev. Solid State Mater. Sci.
31
,
55
(
2006
).
3.
I.
Utke
,
P.
Hoffmann
, and
J.
Melngailis
,
J. Vac. Sci. Technol. B
26
,
1197
(
2008
).
4.
A.
Botman
,
J. J.
Mulders
, and
C. W.
Hagen
,
Nanotechnology
20
,
372001
(
2009
).
5.
S.
Barth
,
M.
Huth
, and
F.
Jungwirth
,
J. Mater. Chem. C
8
,
15884
(
2020
).
6.
I.
Utke
,
P.
Hoffmann
,
B.
Dwir
,
K.
Leifer
,
E.
Kapon
, and
P.
Doppelt
,
J. Vac. Sci. Technol. B
18
,
3168
(
2000
).
7.
A. V.
Riazanova
,
Y. G. M.
Rikers
,
J. J. L.
Mulders
, and
L. M.
Belova
,
Langmuir
28
,
6185
(
2012
).
8.
M. M.
Shawrav
,
P.
Taus
,
H. D.
Wanzenboeck
,
M.
Schinnerl
,
M.
Stoger-Pollach
,
S.
Schwarz
,
A.
Steiger-Thirsfeld
, and
E.
Bertagnolli
,
Sci. Rep.
6
,
34003
(
2016
).
9.
J. J. L.
Mulders
,
L. M.
Belova
, and
A.
Riazanova
,
Nanotechnology
22
,
055302
(
2011
).
10.
P. C.
Hoyle
,
J. R. A.
Cleaver
, and
H.
Ahmed
,
Appl. Phys. Lett.
64
,
1448
(
1994
).
11.
N. A.
Roberts
,
C. M.
Gonzalez
,
J. D.
Fowlkes
, and
P. D.
Rack
,
Nanotechnology
24
,
415301
(
2013
).
12.
M.
Shimojo
,
M.
Takeguchi
, and
K.
Furuya
,
Nanotechnology
17
,
3637
(
2006
).
13.
A.
Perentes
,
G.
Sinicco
,
G.
Boero
,
B.
Dwir
, and
P.
Hoffmann
,
J. Vac. Sci. Technol. B
25
,
2228
(
2007
).
14.
W. J.
Mitchell
and
E. L.
Hu
,
J. Vac. Sci. Technol. B
17
,
1622
(
1999
).
15.
A. V.
Riazanova
,
B. N.
Costanzi
,
A. I.
Aristov
,
Y. G. M.
Rikers
,
J. J. L.
Mulders
,
A. V.
Kabashin
,
E. D.
Dahlberg
, and
L. M.
Belova
,
Nanotechnology
27
,
115304
(
2016
).
16.
S.
Lipp
,
J. Vac. Sci. Technol. B
14
,
3920
(
1996
).
17.
A. V.
Riazanova
,
B. N.
Costanzi
,
A.
Aristov
,
Y. G. M.
Rikers
,
V.
Strom
,
J. J.
Mulders
,
A. V.
Kabashin
,
E. D.
Dahlberg
, and
L. M.
Belova
,
Nanotechnology
25
,
155301
(
2014
).
18.
J.
Li
,
M.
Toth
,
V.
Tileli
,
K. A.
Dunn
,
C. J.
Lobo
, and
B. L.
Thiel
,
Appl. Phys. Lett.
93
,
023130
(
2008
).
19.
E.
Fortunato
,
P.
Barquinha
, and
R.
Martins
,
Adv. Mater.
24
,
2945
(
2012
).
20.
L.
Petti
,
N.
Münzenrieder
,
C.
Vogt
,
H.
Faber
,
L.
Büthe
,
G.
Cantarella
,
F.
Bottacchi
,
T. D.
Anthopoulos
, and
G.
Tröster
,
Appl. Phys. Rev.
3
,
021303
(
2016
).
21.
M. H.
Park
,
Y. H.
Lee
,
T.
Mikolajick
,
U.
Schroeder
, and
C. S.
Hwang
,
MRS Commun.
8
,
795
(
2018
).
22.
D. S.
Jeong
,
R.
Thomas
,
R. S.
Katiyar
,
J. F.
Scott
,
H.
Kohlstedt
,
A.
Petraru
, and
C. S.
Hwang
,
Rep. Prog. Phys.
75
,
076502
(
2012
).
23.
M. T.
Bohr
,
R. S.
Chau
,
T.
Ghani
, and
K.
Mistry
,
IEEE Spectr.
44
,
29
(
2007
).
24.
H.
Zhu
,
C.
Tang
,
L. R. C.
Fonseca
, and
R.
Ramprasad
,
J. Mater. Sci.
47
,
7399
(
2012
).
25.
T. S.
Böscke
,
J.
Müller
,
D.
Bräuhaus
,
U.
Schröder
, and
U.
Böttger
,
Appl. Phys. Lett.
99
,
102903
(
2011
).
26.
M.
Balog
,
M.
Schieber
,
S.
Patai
, and
M.
Michman
,
J. Cryst. Growth
17
,
298
(
1972
).
27.
M.
Ritala
,
M.
Leskelä
,
L.
Niinistö
,
T.
Prohaska
,
G.
Friedbacher
, and
M.
Grasserbauer
,
Thin Solid Films
250
,
72
(
1994
).
28.
S.
Sayan
,
S.
Aravamudhan
,
B. W.
Busch
,
W. H.
Schulte
,
F.
Cosandey
,
G. D.
Wilk
,
T.
Gustafsson
, and
E.
Garfunkel
,
J. Vac. Sci. Technol. A
20
,
507
(
2002
).
29.
Y.-S.
Lin
,
R.
Puthenkovilakam
, and
J. P.
Chang
,
Appl. Phys. Lett.
81
,
2041
(
2002
).
30.
T.
Shimizu
,
K.
Katayama
,
T.
Kiguchi
,
A.
Akama
,
T. J.
Konno
, and
H.
Funakubo
,
Appl. Phys. Lett.
107
,
032910
(
2015
).
31.
H. A.
Hsain
,
Y.
Lee
,
M.
Materano
,
T.
Mittmann
,
A.
Payne
,
T.
Mikolajick
,
U.
Schroeder
,
G. N.
Parsons
, and
J. L.
Jones
,
J. Vac. Sci. Technol. A
40
,
010803
(
2022
).
32.
See the supplementary material at https://www.scitation.org/doi/suppl/10.1116/6.0002140 for EEL spectra of Hf M4,5 edges and additional electron diffraction analysis results.
33.
H.
Miyazoe
,
I.
Utke
,
H.
Kikuchi
,
S.
Kiriu
,
V.
Friedli
,
J.
Michler
, and
K.
Terashima
,
J. Vac. Sci. Technol. B
28
,
744
(
2010
).
34.
M.
Takeguchi
,
M.
Shimojo
, and
K.
Furuya
,
Jpn. J. Appl. Phys.
46
,
6183
(
2007
).
35.
J.
Mavracic
,
F. C.
Mocanu
,
V. L.
Deringer
,
G.
Csanyi
, and
S. R.
Elliott
,
J. Phys. Chem. Lett.
9
,
2985
(
2018
).
36.
S.
Pathak
,
P.
Das
,
T.
Das
,
G.
Mandal
,
B.
Joseph
,
M.
Sahu
,
S. D.
Kaushik
, and
V.
Siruguri
,
Acta Crystallogr., Sect. C: Struct. Chem.
76
,
1034
(
2020
).
37.
O.
Ohtaka
,
T.
Yamanaka
,
S.
Kume
,
N.
Hara
,
H.
Asano
, and
F.
Izumi
,
J. Am. Ceram. Soc.
78
,
233
(
1995
).
38.
S. J.
McCormack
,
R. J.
Weber
, and
W. M.
Kriven
,
Acta Mater.
161
,
127
(
2018
).

Supplementary Material

You do not currently have access to this content.