The performances of various configurations of InGaN solar cells are compared using nextnano semiconductor simulation software. Here, we compare a flat base-graded wall GaN/InGaN structure, with an InxGa1−xN well with sharp GaN contact layers, and an InxGa1−xN structure with InxGa1−xN contact layers, i.e., a homojunction. The doping in the graded structures is the result of polarization doping at each edge (10 nm from each side) due to the compositional grading, while the well structures and homojunctions are impurities doped at each edge (10 nm from each side) at levels equal to the polarization doping density in the graded structure with similar maximum indium concentration. The solar cells are characterized by their open-circuit voltage, Voc, short circuit current, Isc, solar efficiency, η, and energy band diagram. The results indicate that an increase in Isc and η results from increasing both the fixed and maximum indium compositions, while the Voc decreases. The maximum efficiency is obtained for the InGaN well with 60% In.

1.
S.
Nakamura
,
M.
Senoh
,
N.
Iwasa
,
S.
Nagahama
,
T.
Yamada
, and
T.
Mukai
,
Jpn. J. Appl. Phys.
34
,
L1332
(
1995
).
2.
S.
Nakamura
,
M.
Senoh
,
S.
Nagahama
,
N.
Iwasa
,
T.
Yamada
,
T.
Matsushita
,
H.
Kiyoku
, and
Y.
Sugimoto
,
Jpn. J. Appl. Phys.
35
,
L74
(
1996
).
3.
G.
Pozina
,
J. P.
Bergman
,
B.
Monemar
,
T.
Takeuchi
,
H.
Amano
, and
I.
Akasaki
,
J. Appl. Phys.
88
,
2677
(
2000
).
4.
A. G.
Bhuiyan
,
K.
Sugita
,
A.
Hashimoto
, and
A.
Yamamoto
,
IEEE J. Photovolt.
2
,
276
(
2012
).
5.
A.
David
and
M. J.
Grundmann
,
Appl. Phys. Lett.
96
,
103504
(
2010
).
6.
G. F.
Brown
,
J. W.
Ager
,
W.
Walukiewicz
, and
J.
Wu
,
Sol. Energy Mater. Sol. Cells
94
,
478
(
2010
).
7.
X. M.
Cai
,
X. Q.
Lv
,
X. J.
Huang
,
X. L.
Wang
,
M. S.
Wang
,
L.
Yang
,
H. L.
Zhu
, and
B. P.
Zhang
,
Phys. Status Solidi A
215
,
1700581
(
2018
).
8.
E.
Vadiee
 et al.,
Appl. Phys. Express
11
,
082304
(
2018
).
9.
S. R.
Routray
and
T. R.
Lenka
,
CSI Trans. ICT
6
,
83
(
2018
).
10.
Z.-H.
Zhang
 et al.,
Appl. Phys. Lett.
105
,
033506
(
2014
).
11.
X.
Shen
,
S.
Lin
,
F.
Li
,
Y.
Wei
,
S.
Zhong
,
H.
Wan
, and
J.
Li
, “Simulation of the InGaN-based tandem solar cells,” in Solar Energy and Applications, edited by
B.
von Roedern
and
A. E.
Delahoy
(
SPIE, San Diego
,
CA
,
2008
), p.
70450E
.
12.
F.
Bouzid
and
L.
Hamlaoui
,
J. Fundam. Appl. Sci.
4
,
108
(
2015
).
13.
S.-W.
Feng
,
C.-M.
Lai
,
C.-Y.
Tsai
,
Y.-R.
Su
, and
L.-W.
Tu
,
Opt. Mater. Express
3
,
1777
(
2013
).
14.
E. A.
Fitzgerald
,
Y-H
Xie
,
M. L.
Green
,
D.
Brasen
,
A. R.
Kortan
,
J.
Michel
,
Y-J
Mii
, and
B. E.
Weir
,
Appl. Phys. Lett.
59
,
811
(
1991
).
15.
F. K.
LeGoues
,
B. S.
Meyerson
,
J. F.
Morar
, and
P. D.
Kirchner
,
J. Appl. Phys.
71
,
4230
(
1992
).
16.
Y.-J.
Lee
,
Y.-C.
Yao
, and
Z.-P.
Yang
,
IEEE Photonics J.
7
,
2300108
(
2015
).
17.
S.
Li
,
M.
Ware
,
J.
Wu
,
P.
Minor
,
Z.
Wang
,
Z.
Wu
,
Y.
Jiang
, and
G. J.
Salamo
,
Appl. Phys. Lett.
101
,
122103
(
2012
).
18.
J.
Simon
,
V.
Protasenko
,
C.
Lian
,
H.
Xing
, and
D.
Jena
,
Science
327
,
60
(
2010
).
19.
D.
Jena
 et al.,
Phys. Status Solidi A
208
,
1511
(
2011
).
20.
nextnano.NEGF - Software for Quantum Transport, “Electronic band diagram,” available at
21.
M.
Sarollahi
,
M.
Zamani Alavijeh
,
M. A.
Aldawsari
,
R.
Allaparthi
,
R.
Alhelais
,
M. A.
Refaei
,
Md. H. U.
Maruf
, and
M. E.
Ware
,
J. Photonics Energy
12
, 022205 (
2022
).
22.
S.
Birner
 et al.,
Acta Phys. Pol. A
110
,
111
(
2006
).
25.
M.
Kurouchi
,
T.
Araki
,
H.
Naoi
,
T.
Yamaguchi
,
A.
Suzuki
, and
Y.
Nanishi
,
Phys. Status Solidi B
241
,
2843
(
2004
).
26.
M. D.
McCluskey
,
C. G.
Van de Walle
,
C. P.
Master
,
L. T.
Romano
, and
N. M.
Johnson
,
Appl. Phys. Lett.
72
,
2725
(
1998
).
27.
M.
Moret
,
B.
Gil
,
S.
Ruffenach
,
O.
Briot
,
Ch.
Giesen
,
M.
Heuken
,
S.
Rushworth
,
T.
Leese
, and
M.
Succi
,
J. Cryst. Growth
311
,
2795
(
2009
).
28.
J.
Wu
,
J. Appl. Phys.
106
,
011101
(
2009
).
29.
S. N.
Alam
,
V. Z.
Zubialevich
,
B.
Ghafary
, and
P. J.
Parbrook
,
Sci. Rep.
10
,
16205
(
2020
).
30.
I.
Vurgaftman
and
J. R.
Meyer
,
J. Appl. Phys.
94
,
3675
(
2003
).
31.
V. I.
Litvinov
,
Phys. Rev. B
104
,
245304
(
2021
).
32.
M. S.
Miao
,
Q.
Yan
,
C. G.
Van de Walle
,
W. K.
Lou
,
L. L.
Li
, and
K.
Chang
,
Phys. Rev. Lett.
109
,
186803
(
2012
).
33.
R.
Belghouthi
,
S.
Taamalli
,
F.
Echouchene
,
H.
Mejri
, and
H.
Belmabrouk
,
Mater. Sci. Semicond. Process.
40
,
424
(
2015
).
34.
X.
Zhang
,
X.
Wang
,
H.
Xiao
,
C.
Yang
,
J.
Ran
,
C.
Wang
,
Q.
Hou
, and
J.
Li
,
J. Phys. Appl. Phys.
40
,
7335
(
2007
).
35.
P. K.
Ghosh
,
H. V.
Stanchu
,
Y.
Maidaniuk
,
M.
Sarollahi
,
M.
Aldawsari
,
A. V.
Kuchuk
,
Y. I.
Mazur
,
G. J.
Salamo
, and
M. E.
Ware
,
Phys. Status Solidi B
257
,
1900591
(
2020
).
You do not currently have access to this content.