Ruthenium and molybdenum are candidate materials to replace Cu as the back-end-of-line interconnect metal for the tightest pitch features for future technology nodes. Due to their better figure of merit ρ0 × λ (ρ0 bulk resistivity, λ electron mean free path), it is expected that the resistance of <10 nm wide Ru and Mo metal lines can be significantly reduced compared to Cu. An important advantage for Ru and Mo is that both materials, in contrast to Cu, can be patterned by means of so-called direct metal etch, through reactive ion etching or atomic layer etching and can potentially be implemented without barrier. An integration scheme with direct metal etch instead of damascene patterning could simplify the overall patterning flow and eventually opens the possibility for exploring new integration concepts and patterning approaches. However, the learning on direct metal etch of Ru and Mo in the literature is scarce, especially at the relevant dimensions of today's interconnects. In this work, we will focus on the major patterning challenges we have encountered during the development of direct metal etch processes for Ru at 18 nm pitch and Mo gratings at 32 nm pitch. We have observed that the direct metal etch of Ru at these small dimensions is impacted by the growth of an oxidized layer on the sidewalls of the hard mask, which originates from the sputtering of the hard mask in combination with the O2-based Ru etch chemistry. This results in a narrowing of the trenches to be patterned and can easily lead to an etch stop in the smallest features. We will discuss several mitigation mechanisms to remove this oxidized layer, as well as to avoid the formation of such a layer. For patterning Mo with a Cl2/O2-based chemistry, the major patterning challenges we encountered are the insufficient sidewall passivation and the oxidation of the patterned Mo lines. The sidewall passivation issue has been overcome with an in situ thin SiO2-like deposition after partial Mo etch, while a possible mitigation mechanism for the Mo oxidation could be the in situ encapsulation immediately after Mo patterning.

1.
Y. L.
Cheng
,
C. Y.
Lee
, and
Y. L.
Huang
, “
Copper metal for semiconductor interconnects
,” in
Noble and Precious Metals-Properties, Nanoscale Effects and Applications
(
Intechopen
,
London
,
2018
), Chap. 10.
2.
L.
Wen
 et al., in
IEEE IITC and 2015 IEEE MAM Conference
(
IEEE
, Grenoble,
2015
), pp.
173
176
.
3.
F.
Wu
,
G.
Levitin
, and
D. W.
Hess
,
ACS Appl. Mater. Interfaces
2
,
2175
(
2010
).
4.
P.
Kapur
,
J. P.
McVittie
, and
K. C.
Saraswat
,
IEEE Trans. Electron Devices
49
,
590
(
2002
).
5.
D.
Gall
,
J. Appl. Phys.
127
,
050901
(
2020
).
6.
M. H.
Van der Veen
 et al., in
IEEE IITC Conference
(
IEEE
, Santa Clara,
2018
), pp.
172
174
.
7.
S.
Dutta
 et al,
IEEE Electron Device Lett.
38
,
949
(
2017
).
8.
D.
Wan
 et al,
IEEE International Interconnect Technology Conference
(
IEEE
, Santa Clara,
2018
), pp.
10
12
.
9.
G.
Murdoch
,
Z.
Tokei
,
S.
Paolillo
,
O. V.
Pedreira
,
K.
Vanstreels
, and
C. J.
Wilson
,
IEEE International Interconnect Technology Conference
(
IEEE
, San Jose,
2020
), pp.
4
6
.
10.
A.
Lesniewska
 et al.,
IEEE International Reliability Physics Symposium
(
IEEE
, Monterey,
2021
), pp.
1
6
.
11.
Z.
Tokei
 et al, in
IEEE International Electron Devices Meeting
32.2.1-4
(
IEEE
, San Francisco,
2020
).
12.
W. E.
Bell
and
M.
Tagami
,
J. Phys. Chem.
67
,
2432
(
1963
).
13.
W.
Pan
and
S. B.
Desu
,
J. Vac. Sci. Technol. B
12
,
3208
(
1994
).
14.
T.
Yunogami
and
K.
Nojiri
,
J. Vac. Sci. Technol. B
18
,
1911
(
2000
).
15.
H. W.
Kim
,
J.-H.
Han
,
B.-S.
Ju
,
C.-J.
Kang
, and
J.-T.
Moon
,
Mater. Sci. Eng. B
95
,
249
(
2002
).
16.
H. W.
Kim
,
B.-S.
Ju
, and
C.-J.
Kang
,
Microelectron. Eng.
65
,
319
(
2003
).
17.
C. C.
Hsu
,
J. W.
Coburn
, and
D. B.
Graves
,
J. Vac. Sci. Technol. A
24
,
1
(
2006
).
18.
S.
Tan
 et al, “
Atomic layer etch-Advancing its application with a new regime,
” in
Invited Talk at 6th International Atomic Layer Etching Workshop
(
ALE
, Bellevue,
2019
).
19.
Y.
Gong
and
R.
Akolkar
,
J. Electrochem. Soc.
167
,
062510
(
2020
).
20.
S.
Paolillo
,
D.
Wan
,
F.
Lazzarino
,
N.
Rassoul
,
D.
Piumi
, and
Z.
Tokei
,
J. Vac. Sci. Technol. B
36
,
03E103
(
2018
).
21.
T. P.
Chow
and
A. J.
Steckl
,
J. Electrochem. Soc.
131
,
2325
(
1984
).
22.
A.
Picard
and
G.
Turban
,
Plasma Chem. Plasma
5
,
333
(
1985
).
23.
R. J.
Saia
and
B.
Gorowitz
,
J. Electrochem. Soc.
135
,
2795
(
1988
).
24.
B. W.
Smith
,
C.
Fonseca
,
L.
Zavyalova
,
Z.
Alam
, and
A.
Bourov
,
J. Vac. Sci. Technol. B
15
,
2259
(
1997
).
25.
O.
Luere
,
E.
Pargon
,
L.
Vallier
, and
O.
Joubert
,
J. Vac. Sci. Technol. B
29
,
011024
(
2011
).
26.
L.
Maduro
,
C.
de Boer
,
M.
Zuiddam
,
E.
Memisevic
, and
S.
Conesa-Boj
,
Phys. E
134
,
114903
(
2021
).
27.
Y.
Kurogi
and
K.
Kamimura
,
Jpn. J. App. Phys.
21
,
168
(
1982
).
28.
S.
Franssila
,
J. Vac. Sci. Technol. B
12
,
2963
(
1994
).
29.
D.
Ha
,
H.
Takeuchi
,
Y.-K.
Choi
, and
T.-J.
King
,
IEEE Trans. Electron Dev.
51
,
1989
(
2004
).
30.
V.
Paraschiv
,
W.
Boullart
, and
E.
Altamirano-Sanchez
,
Microelectron. Eng.
105
,
60
(
2013
).
You do not currently have access to this content.