Field emission data are often represented on a Fowler–Nordheim plot but a new empirical equation has been recently proposed to better analyze experiments. Such an equation is based on approximations of the Murphy and Good model and predicts that a constant parameter κ, depending only on the work function of the emitter, can be extracted from the data. We compared this empirical equation with simulations of the Murphy and Good model in order to determine the range of validity of the approximations and the robustness of the relationship between κ and the work function. We found that κ is constant only over a limited range of electric fields and so depends significantly on the field enhancement factor. This result calls into question the usefulness of the new empirical equation.

1.
R. H.
Fowler
and
L.
Nordheim
,
Proc. R. Soc. London Ser. A
119
,
173
(
1928
).
2.
K. L.
Jensen
,
Introduction to the Physics of Electron Emission
(
Wiley
,
New York
,
2017
).
3.
J. M.
Beebe
,
B.
Kim
,
J. W.
Gadzuk
,
C. D.
Frisbie
, and
J. G.
Kushmerick
,
Phys. Rev. Lett.
97
,
026801
(
2006
).
4.
I.
Golokolenov
,
A.
Guthrie
,
S.
Kafanov
,
Y. A.
Pashkin
, and
V.
TsepelinBeebe
,
Nat. Commun.
12
,
2747
(
2021
).
5.
V.
Di Lecce
,
S.
Krishnamoorthy
,
M.
Esposto
,
T.-H.
Hung
,
A.
Chini
, and
S.
Rajan
,
Electron. Lett.
48
,
347
(
2012
).
6.
R. G.
Forbes
,
Appl. Phys. Lett.
92
,
193105
(
2008
).
7.
E.
Popov
,
A.
Kolosko
, and
S.
Filippov
, “Experimental definition of k-power of pre-exponential voltage factor for LAFE,” in 2018 31st International Vacuum Nanoelectronics Conference (IVNC) (IEEE, New York, 2018), pp. 1–2.
8.
M.
Zubair
,
Y. S.
Ang
, and
L. K.
Ang
,
IEEE Trans. Electron Devices
65
,
2089
(
2018
).
9.
R.
Forbes
,
E.
Popov
,
A.
Kolosko
, and
S.
Filippov
,
R. Soc. Open Sci.
8
,
201986
(
2021
).
10.
E. L.
Murphy
and
R.
Good
, Jr.,
Phys. Rev.
102
,
1464
(
1956
).
11.
A.
Modinos
,
Field, Thermionic, and Secondary Electron Emission Spectroscopy
(
Springer
,
New York
,
1984
).
12.
R. G.
Forbes
,
J. H.
Deane
,
A.
Fischer
, and
M. S.
Mousa
,
Jordan J. Phys.
8
,
125
(
2015
).
13.
C. P.
de Castro
,
T. A.
de Assis
,
R.
Rivelino
,
F. d. B.
Mota
, and
C. M.
de Castilho
,
J. Vac. Sci. Technol. B
39
,
060601
(
2021
).
14.
B.
Lepetit
,
J. Appl. Phys.
125
,
025107
(
2019
).
15.
A.
Kyritsakis
and
J.
Xanthakis
,
Proc. R. Soc. London A
471
,
20140811
(
2015
).
16.
K. L.
Jensen
,
J. Appl. Phys.
126
,
065302
(
2019
).
17.
S.-D.
Liang
and
L.
Chen
,
Phys. Rev. Lett.
101
,
027602
(
2008
).
18.
R. G.
Forbes
,
J. Vac. Sci. Technol. B
28
,
C2A43
(
2010
).
19.
R. G.
Forbes
and
J. H.
Deane
,
Proc. R. Soc. London A
463
,
2907
(
2007
).
20.
A.
Ayari
, “Dataset for ‘
All field emission models are wrong, … but are any of them useful?
’” (2022).
21.
A.
Ayari
,
P.
Vincent
,
S.
Perisanu
,
P.
Poncharal
, and
S. T.
Purcell
, “
Does a banal tungsten field emitter obey the field emission theory?
,” in
2021 34th International Vacuum Nanoelectronics Conference (IVNC)
(IEEE, New York, 2021), pp. 1–2.
22.
W.
Dyke
and
W.
Dolan
, “
Field emission
,” in
Advances in Electronics and Electron Physics
(
Elsevier
,
New York
,
1956
), Vol. 8, pp.
89
185
.
23.
R. G.
Forbes
,
Proc. R. Soc. London A
469
,
20130271
(
2013
).
24.
E.
Popov
,
A.
Kolosko
, and
S.
Filippov
,
AIP Adv.
9
,
015129
(
2019
).
25.
F.
Charbonnier
and
E.
Martin
,
J. Appl. Phys.
33
,
1897
(
1962
).
You do not currently have access to this content.