Ultrathin films suspended as freestanding membranes are critical to many microelectronic and materials science applications. However, fabrication methods are currently limited in either their flexibility, due to material selectivity issues during the final membrane release, or their scalability. Here, we demonstrate a novel fabrication process for suspending ultrathin films with thicknesses as low as 4 nm and lateral dimensions up to 20 × 1000 μm from a variety of materials grown by atomic layer deposition. A silicon nitride membrane serves as the support for a sacrificial polymer layer and an ultrathin atomic layer deposition film which, after plasma etching, will form the membrane. The high chemical selectivity between atomic layer deposition-grown transition metal nitrides and oxides and the sacrificial polymer means that ultrathin films of a variety of materials can be released without damage using a single process. Electrically conductive titanium nitride membranes can be produced by this method and are of significant interest for electron microscopy applications. Electron transparency of titanium nitride membranes was found to be ∼14% higher than silicon nitride of the same thickness, and of similar conductivity to graphite, meaning that ultrathin, conductive, and electron transparent membranes can be fabricated at scale. These membranes are ideal supports for electron and photon characterization techniques, as well as microelectromechanical system applications that require a conductive membrane.

1.
A. A.
Barlian
,
W. T.
Park
,
J. R.
Mallon
,
A. J.
Rastegar
, and
B. L.
Pruitt
,
Proc. IEEE
97
,
513
(
2009
).
2.
H.
Nazemi
,
A.
Joseph
,
J.
Park
, and
A.
Emadi
,
Sensors
19
,
1285
(
2019
).
3.
P.
Song
,
Z.
Ma
,
J.
Ma
,
L.
Yang
,
J.
Wei
,
Y.
Zhao
,
M.
Zhang
,
F.
Yang
, and
X.
Wang
,
Micromachines
11
,
56
(
2020
).
4.
J.
de Jong
,
R. G. H.
Lammertink
, and
M.
Wessling
,
Lab Chip
6
,
1125
(
2006
).
5.
A.
Evans
,
A.
Bieberle-Hütter
,
J. L. M.
Rupp
, and
L. J.
Gauckler
,
J. Power Sources
194
,
119
(
2009
).
6.
J. R.
Dwyer
and
M.
Harb
,
Appl. Spectrosc.
71
,
2051
(
2017
).
7.
L.
Reimer
and
H.
Kohl
,
Transmission Electron Microscopy: Physics of Image Formation
(
Springer New York
,
New York, NY
,
2008
), pp.
139
192
.
8.
S.
Franssila
,
Introduction to Microfabrication
, 2nd ed. (
Wiley
,
West Sussex
,
2010
).
9.
See https://www.nanofab.ualberta.ca/wp-content/uploads/downloads/2016/07/KOH-Etching-Info-2013_V2.pdf for The Nanofab at University of Alberta, KOH Etching of Bulk Silicon (accessed 5 July 2021).
10.
J. S.
Bunch
,
S. S.
Verbridge
,
J. S.
Alden
,
A. M.
van der Zande
,
J. M.
Parpia
,
H. G.
Craighead
, and
P. L.
McEuen
,
Nano Lett.
8
,
2458
(
2008
).
11.
D. J.
Kelly
,
M.
Zhou
,
N.
Clark
,
M. J.
Hamer
,
E. A.
Lewis
,
A. M.
Rakowski
,
S. J.
Haigh
, and
R. V.
Gorbachev
,
Nano Lett.
18
,
1168
(
2018
).
13.
S. M.
George
,
Chem. Rev.
110
,
111
(
2010
).
14.
R. W.
Johnson
,
A.
Hultqvist
, and
S. F.
Bent
,
Mater. Today
17
,
236
(
2014
).
15.
O.
Sneh
,
R. B.
Clark-Phelps
,
A. R.
Londergan
,
J.
Winkler
, and
T. E.
Seidel
,
Thin Solid Films
402
,
248
(
2002
).
16.
Y. L.
Mohammad Nasim
,
Ming
Wen
, and
Cuie
Wen
,
J. Mater. Sci. Technol.
50
,
215
(
2020
).
17.
S.
Vepřek
,
J. Vac. Sci. Technol. A
17
,
2401
(
1999
).
18.
P. C.
Yashar
and
W. D.
Sproul
,
Vacuum
55
,
179
(
1999
).
20.
T. S.
English
,
J.
Provine
,
A. F.
Marshall
,
A. L.
Koh
, and
T. W.
Kenny
,
Ultramicroscopy
166
,
39
(
2016
).
21.
L.
Gooseen
, “Ultra-thin integrated ALD alumina electron-transparent windows for nanoreactor applications,”
M.S. thesis
(
Delft University of Technology
,
2018
).
22.
Y.
Lan
,
H.
Wang
,
D.
Wang
,
G.
Chen
, and
Z.
Ren
,
J. Nanotechnol.
2010
,
279608
(
2010
).
23.
24.
K.
Davami
,
L.
Zhao
,
E.
Lu
,
J.
Cortes
,
C.
Lin
,
D. E.
Lilley
,
P. K.
Purohit
, and
I.
Bargatin
,
Nat. Commun.
6
,
10019
(
2015
).
25.
V.
Prodanović
,
H. W.
Chan
,
H. V. D.
Graaf
, and
P. M.
Sarro
,
Nanotechnology
29
,
155703
(
2018
).
26.
S. X.
Tao
,
H. W.
Chan
, and
H.
Van der Graaf
,
Materials
9
,
1017
(
2016
).
27.
H.
van der Graaf
 et al.,
Nucl. Instrum. Methods Phys. Res., Sect. A
847
,
148
(
2017
).
28.
J.
Larkin
,
R.
Henley
,
D. C.
Bell
,
T.
Cohen-Karni
,
J. K.
Rosenstein
, and
M.
Wanunu
,
ACS Nano
7
,
10121
(
2013
).
29.
K.-B.
Park
,
H.-J.
Kim
,
Y.-H.
Kang
,
J.-S.
Yu
,
H.
Chae
,
K.
Lee
,
H.-M.
Kim
, and
K.-B.
Kim
,
Nanoscale
9
,
18772
(
2017
).
30.
B. M.
Venkatesan
,
B.
Dorvel
,
S.
Yemenicioglu
,
N.
Watkins
,
I.
Petrov
, and
R.
Bashir
,
Adv. Mater.
21
,
2771
(
2009
).
31.
J. D.
Baek
,
Y.-J.
Yoon
,
W.
Lee
, and
P.-C.
Su
,
Energy Environ. Sci.
8
,
3374
(
2015
).
32.
K.
Kerman
,
T.
Tallinen
,
S.
Ramanathan
, and
L.
Mahadevan
,
J. Power Sources
222
,
359
(
2013
).
33.
J. H.
Shim
,
C.-C.
Chao
,
H.
Huang
, and
F. B.
Prinz
,
Chem. Mater.
19
,
3850
(
2007
).
34.
S.
Goerke
 et al.,
Appl. Surf. Sci.
338
,
35
(
2015
).
35.
L.
Sainiemi
,
K.
Grigoras
, and
S.
Franssila
,
Nanotechnology
20
,
075306
(
2009
).
36.
M.
Berdova
 et al.,
Acta Mater.
66
,
370
(
2014
).
37.
E.
Österlund
,
J.
Kinnunen
,
V.
Rontu
,
A.
Torkkeli
, and
M.
Paulasto-Kröckel
,
J. Alloys Compd.
772
,
306
(
2019
).
38.
V.
Rontu
,
A.
Nolvi
,
A.
Hokkanen
,
E.
Haeggström
,
I.
Kassamakov
, and
S.
Franssila
,
Mater. Res. Express
5
,
046411
(
2018
).
39.
L.
Wang
,
J. J.
Travis
,
A. S.
Cavanagh
,
X.
Liu
,
S. P.
Koenig
,
P. Y.
Huang
,
S. M.
George
, and
J. S.
Bunch
,
Nano Lett.
12
,
3706
(
2012
).
40.
K. R.
Williams
,
K.
Gupta
, and
M.
Wasilik
,
J. Microelectromech. Syst.
12
,
761
(
2003
).
41.
W.
Lengauer
,
S.
Binder
,
K.
Aigner
,
P.
Ettmayer
,
A.
Guillou
,
J.
Debuigne
, and
G.
Groboth
,
J. Alloys Compd.
217
,
137
(
1995
).
42.
D. S.
Stone
,
K. B.
Yoder
, and
W. D.
Sproul
,
J. Vac. Sci. Technol. A
9
,
2543
(
1991
).
43.
B.
Elsener
,
A.
Rota
, and
H.
Böhni
,
Mater. Sci. Forum
44
,
29
(
1989
).
44.
M.
Birkholz
 et al.,
Adv. Funct. Mater.
21
,
1652
(
2011
).
45.
D. R.
Ciarlo
,
Biomed. Microdevices
4
,
63
(
2002
).
46.
A. W.
Grant
,
Q. H.
Hu
, and
B.
Kasemo
,
Nanotechnology
15
,
1175
(
2004
).
47.
W. W.
Molzen
,
A. N.
Broers
,
J. J.
Cuomo
,
J. M. E.
Harper
, and
R. B.
Laibowitz
,
J. Vac. Sci. Technol.
16
,
269
(
1979
).
48.
W. F.
Gorham
,
J. Polym. Sci., Part A: Polym. Chem.
4
,
3027
(
1966
).
49.
J.
Ortigoza-Diaz
,
K.
Scholten
,
C.
Larson
,
A.
Cobo
,
T.
Hudson
,
J.
Yoo
,
A.
Baldwin
,
A.
Weltman Hirschberg
, and
E.
Meng
,
Micromachines
9
,
422
(
2018
).
50.
R. P.
von Metzen
and
T.
Stieglitz
,
Biomed. Microdevices
15
,
727
(
2013
).
51.
K. R.
Williams
,
J. Therm. Anal.
49
,
589
(
1997
).
52.
P. K.
Wu
,
G. R.
Yang
,
J. F.
McDonald
, and
T. M.
Lu
,
J. Electron. Mater.
24
,
53
(
1995
).
53.
V.
Miikkulainen
,
M.
Leskelä
,
M.
Ritala
, and
R. L.
Puurunen
,
J. Appl. Phys.
113
,
021301
(
2013
).
54.
O. M. E.
Ylivaara
 et al.,
Thin Solid Films
552
,
124
(
2014
).
55.
J. I.
Goldstein
,
D. E.
Newbury
,
P.
Echlin
,
D. C.
Joy
,
C. E.
Lyman
,
E.
Lifshin
,
L.
Sawyer
, and
J. R.
Michael
,
Scanning Electron Microscopy and X-Ray Microanalysis
, 3rd ed. (
Springer US
,
Boston, MA
,
2003
), pp.
297
353
.
56.
K.
Kanaya
and
S.
Okayama
,
J. Phys. D Appl. Phys.
5
,
43
(
1972
).
57.
J. F.
Moulder
and
J.
Chastain
,
Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data
(
Physical Electronics Division, Perkin-Elmer Corporation
,
Eden Prairie
,
1992
).
58.
T.
Malis
,
S. C.
Cheng
, and
R. F.
Egerton
,
J. Electron Microsc. Tech.
8
,
193
(
1988
).
59.
H.
Shinotsuka
,
S.
Tanuma
,
C. J.
Powell
, and
D. R.
Penn
,
Surf. Interface Anal.
51
,
427
(
2019
).
60.
M. E.
Riley
,
C. J.
MacCallum
, and
F.
Biggs
,
At. Data Nucl. Data Tables
15
,
443
(
1975
).
61.
62.
D. C.
Giancoli
,
Physics: Principles with Applications
(
Prentice-Hall
,
Englewood Cliffs
,
1995
).
63.
See supplementary material at https://www.scitation.org/doi/suppl/10.1116/6.0001309 for ALD deposition parameters and four-point probe measurements for TiN resistivity.

Supplementary Material

You do not currently have access to this content.