Field emission (FE) from semiconducting nanowires (NWs) is studied for expanding electron gun performances and functionality in terms of stability, brightness, and pulsed emission. Here, we report on a pronounced and robust double negative differential resistance (NDR) in the FE IV characteristics measured during photoassisted field emission experiments on highly crystalline p-type silicon NWs. The main feature is a double NDR in the current saturation regime, which can be modulated by both temperature and light intensity. These results contrast with previous FE studies in which only a barely noticeable single NDR was reported. Several mechanisms for the physical explanation of the NDR are currently under consideration: photogenerated carrier instabilities in the depletion region, which give rise to a pulsed space-charge current in the nanowire or tunneling through a double quantum well formed by confinement at the NW apex. Because NDRs are signatures of pulsed currents, these results suggest new functionalities for which pulsed electron sources can potentially be achieved at high repetition rates.

2.
A.
Feist
,
K. E.
Echternkamp
,
J.
Schauss
,
S. V.
Yalunin
,
S.
Schafer
, and
C.
Ropers
,
Nature
521
,
200
(
2015
).
3.
M.
Kruger
,
M.
Schenk
, and
P.
Hommelhoff
,
Nature
475
,
78
(
2011
).
4.
M. F.
Ciappina
et al.,
Rep. Prog. Phys.
80
,
054401
(
2017
).
5.
B. J.
Siwick
,
J. R.
Dwyer
,
R.
Jordan
, and
R. J. D.
Miller
,
Science
302
,
1382
(
2003
).
6.
T.
Ishikawa
et al.,
Science
350
,
1501
(
2015
).
7.
M.
Gulde
,
S.
Schweda
,
G.
Storeck
,
M.
Maiti
,
H. K.
Yu
,
A. M.
Wodtke
,
S.
Schfer
, and
C.
Ropers
,
Science
345
,
200
(
2014
).
8.
L.
Hudanski
et al.,
Nanotechnology
19
,
105201
(
2008
).
9.
L.
Sabaut
,
P.
Ponard
,
J.-P.
Mazellier
, and
P.
Legagneux
,
J. Vac. Sci. Technol. B
34
,
02G101
(
2016
).
10.
A.
Ayari
,
P.
Vincent
,
S.
Perisanu
,
M.
Choueib
,
M.
Gouttenoire
,
M.
Bechelany
,
D.
Cornu
, and
S. T.
Purcell
,
Nano Lett.
7
,
2252
(
2007
).
11.
S. M.
Sze
,
Physics of Semiconductor Devices
(
Wiley Interscience
,
Hoboken
,
1969
), pp.
96
104
.
12.
J. B.
Gunn
,
Solid State Commun.
1
,
88
(
1963
).
13.
C. L.
Ho
,
M. C.
Wu
,
W. J.
Ho
, and
J. W.
Liaw
,
Appl. Phys. Lett.
74
,
4008
(
1999
).
14.
F.
Capasso
,
K.
Mohammed
, and
A. Y.
Cho
,
IEEE J. Quantum Electron.
QE-22
,
1853
(
1986
).
15.
F.
Chen
,
B.
Li
, and
K. D.
Feng
,
Appl. Phys. Lett.
80
,
3271
(
2002
).
16.
M. P.
Shaw
,
V. V.
Mitin
,
E.
Scholl
, and
H. L.
Grubin
,
The Physics of Instabilities in Solid State Electron Devices
(
Plenium
,
New York
,
1992
), pp.
1
11
.
17.
H. W.
Tsang
,
S. J.
Menley
,
V.
Stolojan
, and
S. R. P.
Silva
,
Appl.Phys.Lett.
89
,
193103
(
2006
).
18.
S.
Johnson
,
U.
Zulicke
, and
A.
Markwitz
,
J. Appl. Phys.
101
,
123712
(
2007
).
19.
O.
Yilmazoglu
et al.,
J. Vac. Sci. Technol. B
30
,
042203
(
2007
).
20.
W.
Zhao
et al.,
Appl. Phys. Lett.
98
,
152110
(
2011
).
21.
M.
Semenenko
,
S.
Antonin
,
R.
Redko
,
Y.
Romanuyk
,
A.
Hladkovska
,
V.
Solntsev
, and
A.
Evtukh
,
J. Appl. Phys.
128
,
114302
(
2020
).
22.
V.
Litovchenko
,
A.
Evtukh
,
Y.
Kryuchenko
,
N.
Goncharuk
,
O.
Yilmazoglu
,
K.
Mutamba
,
H. L.
Hartnagel
, and
D.
Pavlidis
,
J. Appl. Phys.
96
,
867
(
2004
).
23.
Y.
Ishida
,
A.
Inoue
, and
H.
Fujiyasu
,
Appl. Phys. Lett.
86
,
183102
(
2005
).
24.
R. H.
Wang
,
W.
Zhao
, and
H.
Yan
,
Sci. Rep.
7
,
43625
(
2017
).
25.
E.
Lefeuvre
,
K. H.
Kim
,
M.
Chatelet
,
D.
Pribat
, and
C. S.
Cojocaru
,
Thin Solid Films
519
,
4603
(
2011
).
26.
S. T.
Purcell
,
P.
Vincent
,
C.
Journet
, and
V.
Binh
,
Phys. Rev. Lett.
89
,
276103
(
2002
).
27.
M.
Choueib
,
R.
Martel
,
C. S.
Cojocaru
,
A.
Ayari
,
P.
Vincent
, and
S. T.
Purcell
,
ACS Nano
6
,
7463
(
2012
).
28.
N. P.
Blanchard
,
A.
Nigues
,
M.
Choueib
,
S.
Perisanu
,
A.
Ayari
,
A.
Poncharal
,
S. T.
Purcell
,
A.
Siria
, and
P.
Vincent
,
Appl. Phys. Lett.
106
,
193102
(
2015
).
29.
R. J.
Arthur
,
J. Appl. Phys.
36
,
3221
(
1965
).
30.
L. M.
Baskin
,
O. I.
Lvov
, and
G. N.
Fursey
,
Phys. Status Solidi B
47
,
49
(
1971
).
31.
M.
Choueib
,
A.
Ayari
,
P.
Vincent
,
M.
Bechelany
,
D.
Cornu
, and
S. T.
Purcell
,
Phys. Rev. B
79
,
075421
(
2009
).
32.
M.
Choueib
,
A.
Ayari
,
P.
Poncharal
,
C.
Journet
,
C. S.
Cojocaru
,
R.
Martel
, and
S. T.
Purcell
,
Appl. Phys. Lett.
99
,
072115
(
2011
).
33.
H. W.
Tsang
,
S. J.
Menley
,
V.
Stolojan
, and
S. R. P.
Silva
,
Appl. Phys. Lett.
89
,
193103
(
2006
).
34.
C.
Langer
,
V.
Bomke
,
M.
Hausladen
,
R.
Lawrowski
,
C.
Prommesberger
,
M.
Bachmann
, and
R.
Schreiner
,
J. Vac. Sci. Technol. B
38
,
013202
(
2020
).
35.
S.
Guerrera
and
A.
Akinwande
,
Nanotechnology
27
,
295302
(
2016
).
36.
H.
Shimawaki
,
M.
Nagao
,
Y.
Neo
,
H.
Mimura
,
F.
Wakaya
, and
M.
Takai
,
Appl. Phys. Lett.
109
,
183106
(
2016
).
37.
See the supplementary material at https://www.scitation.org/doi/suppl/10.1116/6.0001650 for (1) extra figures, (2) schema of the UHV system, and (3) calculations of laser heating at 1W/cm2.

Supplementary Material

You do not currently have access to this content.