Spatially resolved field emission measurements represent an important factor in further development of existing field emitter concepts. In this work, we present a novel approach that allows quantitative analysis of individual emission spots from integral current-voltage measurements using a low-cost and commercially available CMOS camera. By combining different exposure times to extrapolate oversaturated and underexposed pixels, a near congruence of integral current and image brightness is shown. The extrapolation also allows parallel investigation of all individual tips participating in the total current with currents ranging from a few nanoampere to one microampere per tip. The sensitivity, which is determined by the integral brightness-to-current ratio, remains unchanged within the measurement accuracy even after ten full measurement cycles. Using a point detection algorithm, the proportional current load of each individual tip of the field emitter array is analyzed and compared at different times during the initial measurement cycle. Together with the extracted IV curves of single emission spots from the integral measurement, the results indicate the effect of premature burnout of particularly sharp tips during conditioning of the emitter.

1.
A.
Basu
,
M. E.
Swanwick
,
A. A.
Fomani
, and
L. F.
Velásquez-García
,
J. Phys. D: Appl. Phys.
48
,
225501
(
2015
).
2.
D. R.
Whaley
,
R.
Duggal
,
C. M.
Armstrong
,
C. L.
Bellew
,
C. E.
Holland
, and
C. A.
Spindt
,
IEEE Trans. Electron Devices
56
,
896
(
2009
).
3.
S.
Edler
 et al.,
J. Vac. Sci. Technol. B
39
,
013205
(
2021
).
4.
A. S.
Bugaev
,
P. A.
Eroshkin
,
V. A.
Romanko
, and
E. P.
Sheshin
,
Phys.-Usp.
56
,
691
(
2013
).
5.
B.
Diop
and
V. T.
Binh
,
Rev. Sci. Instrum.
83
,
094704
(
2012
).
6.
X.
Shao
,
A.
Srinivasan
,
W. K.
Ang
, and
A.
Khursheed
,
Nat. Commun.
9
,
1288
(
2018
).
7.
P.
Serbun
,
V.
Porshyn
,
G.
Müller
, and
D.
Lützenkirchen-Hecht
,
Rev. Sci. Instrum.
91
,
083906
(
2020
).
8.
M.
Fransen
,
T.
van Rooy
, and
P.
Kruit
,
Appl. Surf. Sci.
146
,
312
(
1999
).
9.
S.
Cheng
,
F. A.
Hill
,
E. V.
Heubel
, and
L. F.
Velasquez-Garcia
,
J. Microelectromech. Syst.
24
,
373
(
2014
).
10.
M.
Esashi
,
A.
Kojima
,
N.
Ikegami
,
H.
Miyaguchi
, and
N.
Koshida
,
Microsyst. Nanoeng.
1
,
15029
(
2015
).
11.
M.
Bachmann
 et al.,
J. Vac. Sci. Technol. B
38
,
023203
(
2020
).
12.
E.
Bunert
,
A.
Heptner
,
T.
Reinecke
,
A. T.
Kirk
, and
S.
Zimmermann
,
Rev. Sci. Instrum.
88
,
024102
(
2017
).
13.
C.
Wendt
 et al., in
14. Dresdner Sensor-Symposium 2019
(AMA Association for Sensors and Measurement,
2019
), pp.
40
43
.
14.
A. A.
Fomani
,
S. A.
Guerrera
,
L. F.
Velasquez-Garcia
, and
A. I. T.
Akinwande
,
IEEE Trans. Electron Devices
61
,
2538
(
2014
).
15.
S. A.
Guerrera
,
L. F.
Velasquez-Garcia
, and
A. I.
Akinwande
,
IEEE Trans. Electron Devices
59
,
2524
(
2012
).
16.
N.
Karaulac
,
G.
Rughoobur
, and
A. I.
Akinwande
,
J. Vac. Sci. Technol. B
38
,
023201
(
2020
).
17.
J.
Bieker
,
R. G.
Forbes
,
S.
Wilfert
, and
H. F.
Schlaak
,
IEEE J. Electron Devices Soc.
7
,
997
(
2019
).
18.
E. O.
Popov
,
A. G.
Kolosko
, and
S. V.
Filippov
,
AIP Adv.
9
,
015129
(
2019
).
19.
P.
Serbun
,
B.
Bornmann
,
A.
Navitski
,
G.
Müller
,
C.
Prommesberger
,
C.
Langer
,
F.
Dams
, and
R.
Schreiner
,
J. Vac. Sci. Technol. B
31
,
02B101
(
2013
).
20.
W. I.
Karain
,
L. V.
Knight
,
D. D.
Allred
, and
A.
Reyes-Mena
,
J. Vac. Sci. Technol. A
12
,
2581
(
1994
).
21.
H.
Todokoro
,
N.
Saitou
, and
S.
Yamamoto
,
Jpn. J. Appl. Phys.
21
,
1513
(
1982
).
22.
E.
Mahner
,
N.
Minatti
,
H.
Piel
, and
N.
Pupeter
,
Appl. Surf. Sci.
67
,
23
(
1993
).
23.
P.
Niedermann
,
C.
Renner
,
A. D.
Kent
, and
O.
Fischer
,
J. Vac. Sci. Technol. A
8
,
594
(
1990
).
24.
L.
Nilsson
,
O.
Groening
,
O.
Kuettel
,
P.
Groening
, and
L.
Schlapbach
,
J. Vac. Sci. Technol. B
20
,
326
(
2002
).
25.
L.
Nilsson
,
O.
Groening
,
C.
Emmenegger
,
O.
Kuettel
,
E.
Schaller
,
L.
Schlapbach
,
H.
Kind
,
J.-M. M.
Bonard
, and
K.
Kern
,
Appl. Phys. Lett.
76
,
2071
(
2000
).
26.
L.
Nilsson
,
O.
Groening
,
P.
Groening
,
O.
Kuettel
, and
L.
Schlapbach
,
J. Appl. Phys.
90
,
768
(
2001
).
27.
A.
Göhl
,
T.
Habermann
,
D.
Nau
,
G.
Müller
,
V.
Raiko
,
D.
Theirich
, and
J.
Engemann
,
J. Vac. Sci. Technol. B
17
,
696
(
1999
).
28.
R. G.
Hobbs
,
W. P.
Putnam
,
A.
Fallahi
,
Y.
Yang
,
F. X.
Kärtner
, and
K. K.
Berggren
,
Nano Lett.
17
,
6069
(
2017
).
29.
Y.
Sun
 et al.,
AIP Adv.
4
,
077110
(
2014
).
30.
V. I.
Kleshch
,
S.
Rackauskas
,
A. G.
Nasibulin
,
E. I.
Kauppinen
,
E. D.
Obraztsova
, and
A. N.
Obraztsov
,
J. Nanoelectron. Optoelectron.
7
,
35
(
2012
).
31.
S.
Edler
 et al.,
J. Appl. Phys.
122
,
124503
(
2017
).
32.
C.
Prommesberger
,
M.
Bachmann
,
F.
Dusberg
,
C.
Langer
,
R.
Lawrowski
,
M.
Hofmann
,
A.
Pahlke
, and
R.
Schreiner
,
IEEE Trans. Electron Devices
64
,
5128
(
2017
).
33.
FRAMOS, 6 (2019).
34.
S.
Suzuki
and
K.
Abe
,
Comput. Vis. Graph. Image Process.
30
,
32
(
1985
).
35.
R.
Matthews
,
N.
Falkner
, and
M.
Sorell
,
Forensic Sci. Int. Digit. Investig.
32
,
200900
(
2020
).
36.
K.
Kanaya
and
S.
Okayama
,
J. Phys. D: Appl. Phys.
5
,
43
(
1972
).
37.
F. A.
Lukiyanov
,
E. I.
Rau
, and
R. A.
Sennov
,
Bull. Russ. Acad. Sci. Phys.
73
,
441
(
2009
).
38.
R. G.
Forbes
,
J. Appl. Phys.
105
,
114313
(
2009
).
39.
S. I.
Daradkeh
and
M. S.
Mousa
,
Appl. Microsc.
47
,
86
(
2017
).
You do not currently have access to this content.