The development of high-power millimeter and THz-band vacuum microelectronic devices (μVEDs) demands structural materials with special properties. In particular, key components of μVEDs must retain their dimensions when heated while operating at higher power levels. A molybdenum-copper alloy is a promising material, thanks to the low thermal expansion of molybdenum and the remarkable thermal and electrical conductivity of copper. However, such alloys can only be obtained by a limited number of techniques that are rather complicated. Thus, the goal of this work is the implementation of vacuum magnetron co-deposition as a facile method in the fabrication of μm-thick Mo–Cu films. Such films are very promising for the microfabrication of microstrip slow-wave structures for high-power millimeter and THz-band μVEDs. This study is focused on controlling the morphology, resistivity, and roughness of the fabricated thin films by changing the deposition process parameters, such as the sputtered Cu and Mo ratio and substrate temperature.

1.
J. H.
Booske
,
R. J.
Dobbs
,
C. D.
Joye
,
C. L.
Kory
,
G. R.
Neil
,
G. S.
Park
,
J.
Park
, and
R. J.
Temkin
,
IEEE Trans. Terahertz Sci. Technol.
1
,
54
(
2011
).
2.
V. L.
Bratman
,
A. G.
Litvak
, and
E. V.
Suvorov
,
Usp. Fiz. Nauk
181
,
867
(
2011
).
3.
R. A.
Lewis
,
J. Phys. D: Appl. Phys.
47
,
374001
(
2014
).
4.
J. F.
O’Hara
,
S.
Ekin
,
W.
Choi
, and
I.
Song
,
Technologies
7
,
43
(
2019
).
5.
T. S.
Rappaport
,
Y.
Xing
,
O.
Kanhere
,
S.
Ju
,
A.
Madanayake
,
S.
Mandal
,
A.
Alkhateeb
, and
G. C.
Trichopoulos
,
IEEE Access
7
,
78729
(
2019
).
6.
I. F.
Akyildiz
,
A.
Kak
, and
S.
Nie
,
IEEE Access
8
,
133995
(
2020
).
7.
A. D.
Grigoriev
,
V. A.
Ivanov
, and
S. I.
Molokovsky
,
Microwave Electronics
(
Springer International Publishing
,
Cham
,
2018
).
8.
S.
Sengele
,
H.
Jiang
,
J. H.
Booske
,
C. L.
Kory
,
D. W.
van der Weide
, and
R. L.
Ives
,
IEEE Trans. Electron Devices
56
,
730
(
2009
).
9.
F.
Shen
,
Y.
Wei
,
H.
Yin
,
Y.
Gong
,
X.
Xu
,
S.
Wang
,
W.
Wang
, and
J.
Feng
,
IEEE Trans. Plasma Sci.
40
,
463
(
2012
).
10.
G.
Ulisse
,
A.
Starodubov
,
V.
Galushka
,
V.
Krozer
,
A.
Serdobintsev
,
M.
Samarskiy
,
N.
Ryskin
, and
A.
Pavlov
,
2019 International Vaccum Electronics Conference
, Busan, South Korea, 28 April–1 May 2019 (
IEEE
, New York,
2019
), pp.
1
2
.
11.
N. M.
Ryskin
,
A. G.
Rozhnev
,
A. V.
Starodubov
,
A. A.
Serdobintsev
,
A. M.
Pavlov
,
A. I.
Benedik
,
R. A.
Torgashov
,
G. V.
Torgashov
, and
N. I.
Sinitsyn
,
IEEE Electron Device Lett.
39
,
757
(
2018
).
12.
N.
Bai
,
M.
Shen
, and
X.
Sun
,
IEEE Trans. Electron Devices
62
,
1622
(
2015
).
13.
S.
Wang
,
S.
Aditya
,
X.
Xia
,
Z.
Ali
,
J.
Miao
, and
Y.
Zheng
,
IEEE Trans. Plasma Sci.
47
,
4650
(
2019
).
14.
N. M.
Ryskin
 et al.,
J. Vac. Sci. Technol. B
39
,
013204
(
2021
).
15.
N.
Bai
,
C.
Feng
,
Y.
Liu
,
H.
Fan
,
C.
Shen
, and
X.
Sun
,
IEEE Trans. Electron Devices
64
,
2949
(
2017
).
16.
R. A.
Torgashov
,
N. M.
Ryskin
,
A. G.
Rozhnev
,
A. V.
Starodubov
,
A. A.
Serdobintsev
,
A. M.
Pavlov
,
V. V.
Galushka
,
I. S.
Bakhteev
, and
S. Y.
Molchanov
,
Tech. Phys.
65
,
660
(
2020
).
17.
G.
Ulisse
and
V.
Krozer
,
IEEE Electron Device Lett.
38
,
126
(
2017
).
18.
A.
Starodubov
 et al., 
2019 International Vaccum Electronics Conference
, Busan, South Korea, 28 April–1 May 2019 (
IEEE
, New York,
2019
), pp.
1
2
.
19.
L.
Himes
,
D.
Gamzina
,
B.
Popovic
,
R.
Barchfeld
, and
N. C.
Luhmann
,
2016 International Vaccum Electronics Conference
, Monterey, CA, 19-21 April 2016 (
IEEE
, New York,
2016
), Vol.
2
.
20.
S.
Gorbatyuk
,
A.
Pashkov
, and
N.
Chichenev
,
Mater. Today Proc.
11
,
31
(
2019
).
21.
A. Starodubov, A. Serdobintsev, A. Galkin, V. Galushka, R. Torgashov, D. Bessonov, A. Pavlov, A. Rozhnev, G. Torgashov, I. Kozhevnikov, V. Sakharov, N. Ryskin, and I. Rasulov,
2020 International Conference on Actual Problems of Electron Devices Engineering
, Saratov, Russia, 24–25 September 2020 (IEEE, New York, 2020), pp. 256–261.
22.
N. S.
Rasor
and
J. D.
McClelland
,
J. Phys. Chem. Solids
15
,
17
(
1960
).
23.
D.
Wang
,
X.
Dong
,
P.
Zhou
,
A.
Sun
, and
B.
Duan
,
Int. J. Refract. Met. Hard Mater.
42
,
240
(
2014
).
24.
S.
Ok Chwa
,
D.
Klein
,
H.
Liao
,
L.
Dembinski
, and
C.
Coddet
,
Surf. Coatings Technol.
200
,
5682
(
2006
).
25.
C.
Aguilar
,
D.
Guzman
,
P. A.
Rojas
,
S.
Ordoñez
, and
R.
Rios
,
Mater. Chem. Phys.
128
,
539
(
2011
).
26.
A.
Kumar
,
K.
Jayasankar
,
M.
Debata
, and
A.
Mandal
,
J. Alloys Compd.
647
,
1040
(
2015
).
27.
K. T.
Schwarz
,
J. M.
Rosalie
,
S.
Wurster
,
R.
Pippan
, and
A.
Hohenwarter
,
Adv. Eng. Mater.
22
,
1900474
(
2020
).
28.
H. R.
Gong
,
L. T.
Kong
, and
B. X.
Liu
,
Phys. Rev. B
69
,
024202
(
2004
).
29.
A. G.
Dirks
and
J. J.
van den Broek
,
J. Vac. Sci. Technol. A
3
,
2618
(
1985
).
30.
J.-T.
Yao
,
C.-J.
Li
,
Y.
Li
,
B.
Chen
, and
H.-B.
Huo
,
Mater. Des.
88
,
774
(
2015
).
31.
E.
Beltowska-Lehman
,
Surf. Coatings Technol.
151–152
,
440
(
2002
).
32.
M. P.
Kirley
and
J. H.
Booske
,
IEEE Trans. Terahertz Sci. Technol.
5
,
1012
(
2015
).
33.
D.
Gamzina
 et al.,
IEEE Trans. Nanotechnol.
15
,
85
(
2016
).
34.
A. V.
Starodubov
,
D. A.
Nozhkin
,
A. A.
Serdobintsev
,
I. O.
Kozhevnikov
,
A. M.
Pavlov
,
V. V.
Galushka
,
N. M.
Ryskin
,
G.
Ulisse
, and
V.
Krozer
,
2021 34th International Vaccum Nanoelectronics Conference
, Lyon, France, 5-9 July 2021 (
IEEE
, New York,
2021
), pp.
1
2
.
35.
W.
Kern
,
J. Electrochem. Soc.
137
,
1887
(
1990
).
36.
J. C.
Russ
,
Fundamental Energy Dispersive X-Ray Analysis
(
Elsevier
, Amsterdam,
1984
), pp.
42
56
.
37.
S.
Tay
,
A.
Kropachev
,
I. E.
Araci
,
T.
Skotheim
,
R. A.
Norwood
, and
N.
Peyghambarian
,
Appl. Phys. Lett.
94
,
071113
(
2009
).
38.
D. L.
Rode
,
V. R.
Gaddam
, and
J. H.
Yi
,
J. Appl. Phys.
102
,
024303
(
2007
).
39.
C.
Guillén
and
J.
Herrero
,
J. Mater. Process. Technol.
143–144
,
144
(
2003
).
40.
A.
Serdobintsev
,
V.
Galushka
,
A.
Pavlov
,
I.
Kozhevnikov
,
A.
Starodubov
,
R.
Torgashov
, and
N.
Ryskin
,
2020 7th International Congress on Energy Fluxes Radiation Effects
, Tomsk, Russia, 14-26 September 2020 (
IEEE
, New York,
2020
), pp.
809
812
.
41.
B. B.
Yang
,
M. P.
Kirley
, and
J. H.
Booske
,
IEEE Trans. Terahertz Sci. Technol.
4
,
368
(
2014
).
42.
I.
Souli
,
G. C.
Gruber
,
V. L.
Terziyska
,
J.
Zechner
, and
C.
Mitterer
,
J. Alloys Compd.
783
,
208
(
2019
).
43.
I.
Souli
,
V. L.
Terziyska
,
J.
Zechner
, and
C.
Mitterer
,
Thin Solid Films
653
,
301
(
2018
).
44.
M.
Oron
and
C. M.
Adams
,
J. Appl. Phys.
40
,
4218
(
1969
).
45.
C. R.
Dean
 et al.,
Nat. Nanotechnol.
5
,
722
(
2010
).
46.
S.
Seal
,
H.
Underwood
,
M.
Uda
,
H.
Osawa
,
A.
Kanai
,
T. L.
Barr
,
E.
Benko
,
A.
Krauss
, and
R. C. C.
Perera
,
J. Vac. Sci. Technol. A
16
,
1901
(
1998
).
47.
N. M.
Ryskin
 et al.,
2020 33rd International Vaccum Nanoelectronics Conference
, Lyon, France, 6-10 July 2020 (
IEEE
, New York,
2020
), pp.
1
2
.
You do not currently have access to this content.