Using p-type semiconductors for field emitters is one simple way to realize an integrated current limiter to improve the lifetime of the cathode. In this work, the origin of the current saturation of p-type silicon emitters is investigated in detail. Single emitters are electrically characterized and compared to simulation results. With a simulation model considering a high surface generation rate and elevated tip temperature, a good agreement to the measured data is found. This observation is supported further by alteration of the surface experimentally. Electrical measurements after different treatments in hydrofluoric acid as well as heated and subsequent operation at room temperature are well explained by the influence of surface generation. Furthermore, it is shown that the field penetration leads to a small voltage drop and a strong geometry-dependent reduction of the field enhancement factor.

1.
A. S.
Bugaev
,
P. A.
Eroshkin
,
V. A.
Romanko
, and
E. P.
Sheshin
,
Phys. Usp.
56
,
691
(
2013
).
2.
D. R.
Whaley
,
R.
Duggal
,
C. M.
Armstrong
,
C. L.
Bellew
,
C. E.
Holland
, and
C. A.
Spindt
,
IEEE Trans. Electron Devices
56
,
896
(
2009
).
3.
A.
Basu
,
M. E.
Swanwick
,
A. A.
Fomani
, and
L. F.
Velásquez-García
,
J. Phys. D: Appl. Phys.
48
,
225501
(
2015
).
4.
X.
Shao
,
A.
Srinivasan
,
W. K.
Ang
, and
A.
Khursheed
,
Nat. Commun.
9
,
1
(
2018
).
5.
P.
Serbun
,
V.
Porshyn
,
G.
Müller
, and
D.
Lützenkirchen-Hecht
,
Rev. Sci. Instrum.
91
,
083906
(
2020
).
6.
B.
Diop
and
V. T.
Binh
,
Rev. Sci. Instrum.
83
,
094704
(
2012
).
7.
M. J.
Fransen
,
T. L.
van Rooy
, and
P.
Kruit
,
Appl. Surf. Sci.
146
,
312
(
1999
).
8.
M.
Bachmann
et al.,
J. Vac. Sci. Technol. B
38
,
023203
(
2020
).
9.
J. T.
Kang
et al.,
IEEE Electron Device Lett.
36
,
1209
(
2015
).
10.
S.
Cheng
,
F. A.
Hill
,
E. V.
Heubel
,
L. F.
Velasquez-Garcia
,
J. Microelectromech. Syst.
24
,
373
(
2015
).
11.
A.
Mavalankar
,
J.
Cameron
, and
G.
Travish
, “Operating high-current field emitters in a commercial x-ray source,” 2017 30th International Vacuum Nanoelectronics Conference, IVNC 2017 (IEEE, New Jersey, 2017), pp. 300–301.
12.
S. H.
Heo
,
H. J.
Kim
,
J. M.
Ha
, and
S. O.
Cho
,
Nanoscale Res. Lett.
7
,
1
(
2012
).
13.
E.
Bunert
,
A. T.
Kirk
,
O.
Käbein
, and
S.
Zimmermann
,
Int. J. Ion. Mobil. Spectrom.
22
,
21
(
2018
).
14.
E.
Bunert
,
A.
Heptner
,
T.
Reinecke
,
A. T.
Kirk
, and
S.
Zimmermann
,
Rev. Sci. Instrum.
88
,
024102
(
2017
).
15.
C.
Wendt
et al., “New non-radioactive field emission based electron source for electron capture detectors,” 14. Dresdner Sensor-Symposium 2019 (AMA Association for Sensors and Measurement, Berlin, 2019), pp. 40–43.
16.
H. H.
Busta
,
J. E.
Pogemiller
, and
B. J.
Zimmerman
, “The field emitter triode as pressure/displacement sensor,” Proceedings of IEEE 6th International Vacuum Microelectronics Conference, IVMC 1993 (IEEE, New Jersey, 1993), pp. 92–93.
17.
F. A.
Baker
and
T. A.
Giorgi
,
Br. J. Appl. Phys.
11
,
433
(
1960
).
18.
N.
Karaulac
,
G.
Rughoobur
, and
A. I.
Akinwande
,
J. Vac. Sci. Technol. B
38
,
023201
(
2020
).
19.
J. W.
Kim
,
J. W.
Jeong
,
J. T.
Kang
,
S.
Choi
,
S.
Ahn
, and
Y. H.
Song
,
Nanotechnology
25
,
065201
(
2014
).
20.
J. S.
Han
,
K. N.
Yun
,
S. H.
Lee
,
H. B.
Go
,
C. J.
Lee
, and
Y. H.
Song
, “Field emission properties of triode structure CNT film emitter,” 2017 30th International Vacuum Nanoelectronics Conference, IVNC 2017 (IEEE, New Jersey, 2017), pp. 164–165.
21.
C.
Langer
et al.,
Nanotechnol. Microelectron.: Mater. Process. Meas. Phenom.
34
,
02G107
(
2016
).
22.
P.
Serbun
,
B.
Bornmann
,
A.
Navitski
,
G.
Müller
,
C.
Prommesberger
,
C.
Langer
,
F.
Dams
, and
R.
Schreiner
,
J. Vac. Sci. Technol. B
31
,
02B101
(
2013
).
23.
S.
Edler
et al.,
J. Vac. Sci. Technol. B
39
,
013205
(
2021
).
24.
L. M.
Baskin
,
O. I.
Lvov
, and
G. N.
Fursey
,
Phys. Status Solidi A
42
,
757
(
1977
).
25.
26.
S. G.
Christov
,
Phys. Status Solidi B
21
,
159
(
1967
).
27.
R.
Fischer
,
Phys. Status Solidi B
3
,
K252
(
1963
).
28.
D.
Biswas
and
R.
Rudra
,
J. Vac. Sci. Technol. B
38
,
023207
(
2020
).
29.
D.
Cai
and
L.
Liu
,
AIP Adv.
3
,
122103
(
2013
).
30.
D.
Biswas
and
R.
Rudra
,
Phys. Plasmas
25
,
083105
(
2018
).
31.
R. G.
Forbes
and
J. H. B.
Deane
,
Proc. R. Soc. A: Math. Phys. Eng. Sci.
463
,
2907
(
2007
).
32.
J.
Breuer
et al.,
J. Vac. Sci. Technol. B
36
,
051805
(
2018
).
33.
R. G.
Forbes
,
J. Appl. Phys.
105
,
114313
(
2009
).
34.
S.
Mingels
,
V.
Porshyn
,
B.
Bornmann
,
D.
Lützenkirchen-Hecht
, and
G.
Müller
,
Rev. Sci. Instrum.
86
,
043307
(
2015
).
35.
R.
Constapel
and
J.
Korec
, “Forward blocking characteristics of SOI power devices at high temperatures,” IEEE International Symposium on Power Semiconductor Devices & ICs (IEEE, New Jersey, 1994), pp. 117–121.
36.
M.
Bachmann
et al.,
J. Vac. Sci. Technol. B
35
,
02C103
(
2017
).
37.
G. N.
Fursey
and
N. V.
Egorov
,
Phys. Status Solidi B
32
,
23
(
1969
).
38.
T.
Konishi
,
K.
Uesugi
,
S.
Kawano
,
T.
Yao
,
H.
Ohshima
,
H.
Ito
, and
T.
Hattori
, “Characterization of HF-treated Si surfaces by photoluminescence spectroscopy and scanning tunneling microscopy,” Conference on Solid State Devices and Materials (Japanese Journal of Applied Physics, Tokyo, 1992), pp. 129–131.
39.
D.
Baek
,
S.
Rouvimov
,
B.
Kim
,
T. C.
Jo
, and
D. K.
Schroder
,
Appl. Phys. Lett.
86
,
1
(
2005
).
40.
M.
Morita
,
T.
Ohmi
,
E.
Hasegawa
,
M.
Kawakami
, and
M.
Ohwada
,
J. Appl. Phys.
68
,
1272
(
1990
).
41.
M.
Morita
,
T.
Ohmi
,
E.
Hasegawa
,
M.
Kawakami
, and
K.
Suma
,
Appl. Phys. Lett.
55
,
562
(
1989
).
42.
D. J.
Dimaria
and
E.
Cartier
,
J. Appl. Phys.
78
,
3883
(
1995
).
43.
H.
Todokoro
,
N.
Saitou
, and
S.
Yamamoto
,
Jpn. J. Appl. Phys.
21
,
1513
(
1982
).
44.
S.
Edler
et al.,
J. Appl. Phys.
122
,
124503
(
2017
).
45.
C.
Prommesberger
,
C.
Langer
,
R.
Ławrowski
, and
R.
Schreiner
,
J. Vac. Sci. Technol. B
35
,
012201
(
2017
).
You do not currently have access to this content.