This article reports on top-down nanofabricated Ni3Si2 nanowires and tests of their electron field emission capabilities. The results include low turn-on electric field, EON, moderate work function, Φ, and the field enhancement factor, β, customizable through nanofabrication. The article also reports on the issues ahead in the field of nanowires-based electron mission, as there are quantitative limitations of the applicability of the Fowler–Nordheim model, which will become increasingly apparent as we continue to optimize the field emission of electrons. To this end, we suggest adding the studies of surface-to-volume ratio effects of the nanowires as another standard for comparison in order to lead to the input form of the density of states as quantum effects becoming more prominent.

1.
W.
Mönch
,
Semiconductor Surfaces and Interfaces
(
Springer-Verlag
,
New York
,
1995
).
2.
E. H.
Rhoderick
,
J. Phys. D
3
,
1153
(
1970
).
3.
R. G.
Forbes
,
J. Appl. Phys.
105
,
114313
(
2009
).
4.
A.
Mayer
,
J. Vacuum Sci. Technol. B
28
,
758
(
2010
).
5.
E. L.
Murphy
and
R. H.
Good
,
Phys. Rev.
102
,
1464
(
1956
).
6.
R. G.
Forbes
,
Proc. R. Soc. A
469
, (published online
2013
).
7.
C. A.
Spindt
,
I.
Brodie
,
L.
Humphrey
, and
E. R.
Westerberg
,
J. Appl. Phys.
47
,
5248
(
1976
).
8.
P. G.
Collins
and
A.
Zettl
,
Phys. Rev. B
55
,
9391
(
1997
).
9.
T.
Zhai
,
X.
Fang
,
Y.
Bando
,
Q.
Liao
,
X.
Xu
,
H.
Zeng
,
Y.
Ma
,
J.
Yao
, and
D.
Goldberg
,
ACS Nano
3
,
949
(
2009
).
10.
X.
Fang
,
Y.
Bando
,
U. K.
Gautam
,
C.
Ye
, and
D.
Golberg
,
J. Mater. Chem.
18
,
509
(
2008
).
11.
K. L.
Jensen
, in
Wiley Encyclopedia of Electrical and Electronics Engineering
, edited by
J. G.
Webster
(
John Wiley & Sons, Inc.
,
New York
,
2014
), pp.
1
29
.
12.
H.
Zhang
,
Q.
Zhang
,
G.
Zhao
,
J.
Tang
,
O.
Zhou
, and
L.
Qin
,
J. Am. Chem. Soc.
127
,
13120
(
2005
).
13.
S.
Bharadwaj
, “Investigation of Oxide Thickness Dependence of Fowler-Nordheim Parameter B,” (University of South Florida.
2004
).
14.
R. G.
Forbes
,
J. Appl. Phys.
126
,
210901
(
2019
).
15.
H.
Jang
,
D.
Kim
,
H.
Lee
, and
S.
Lee
,
Mater. Lett.
59
,
1526
(
2005
).
16.
T.
Yu
,
Y. W.
Zhu
,
X. J.
Xu
,
Z. X.
Shen
,
P.
Chen
,
C.-T.
Lim
,
J. T.-L.
Thong
, and
C.-H.
Sow
,
Adv. Mater.
17
,
1595
(
2005
).
17.
B.
Xiang
,
Q. X.
Wang
,
Z.
Wang
,
X. Z.
Zhang
,
L. Q.
Liu
,
J.
Xu
, and
D. P.
Yu
,
Appl. Phys. Lett.
86
,
243103
(
2005
).
18.
J.
Zhou
,
Y.
Ding
,
S. Z.
Deng
,
L.
Gong
,
N. S.
Xu
, and
Z. L.
Wang
,
Adv. Mater.
17
,
2107
(
2005
).
19.
E.
Li
,
X.
Cheng
,
D.
Zhao
,
R.
Xu
,
M.
Xi
,
Z.
Cui
, and
T.
Zhao
,
Micro Nano Lett.
7
,
1305
(
2012
).
20.
L.
Cheng
,
Y. F.
Chen
,
R. S.
Chen
, and
Y. S.
Huang
,
Appl. Phys. Lett.
86
,
103104
(
2005
).
21.
Y. W.
Zhu
,
T.
Yu
,
C. H.
Sow
,
Y. J.
Liu
, and
A. T. S.
Wee
,
Appl. Phys. Lett.
87
,
023103
(
2005
).
22.
J.
Wu
,
H. C.
Shih
, and
W.
Wu
,
Chem. Phys. Lett.
413
,
490
(
2005
).
23.
J. H.
He
,
T. H.
Wu
,
C. L.
Hsin
,
K. M.
Li
,
L. J.
Chen
,
Y. L.
Chueh
,
L. J.
Chou
, and
Z. L.
Wang
,
Small
2
,
116
(
2006
).
24.
S. Q.
Li
,
Y. X.
Liang
, and
T. H.
Wang
,
Appl. Phys. Lett.
88
,
053107
(
2006
).
25.
Y.
Chueh
,
M.
Ko
,
L.
Chou
,
L.
Chen
,
C.
Wu
, and
C.
Chen
,
Nano Lett.
6
,
1637
(
2006
).
26.
Y. W.
Zhu
,
T.
Yu
,
F. C.
Cheong
,
X. J.
Xu
,
C. T.
Lim
,
V. B. C.
Tan
,
J. T. L.
Thong
, and
C. H.
Sow
,
Nanotechnology
16
,
88
(
2004
).
27.
Y. K.
Tseng
,
C. J.
Huang
,
H. M.
Cheng
,
I. N.
Lin
, and
K. S.
Liu
,
Adv. Funct. Mater.
13
,
811
(
2003
).
28.
L.
Chang
,
M.
Huang
,
H. C.
Shih
,
F. S.
Shieu
, and
J.
Yeh
,
2008 2nd IEEE International Nanoelectronics Conference
24-27 March 2008, Shanghai, China, 2008 (
IEEE, Piscataway, NJ
,
2008
), Vol. 428.
29.
W.
Gu
,
S.
Lim
,
J.
Gao
,
H.
Choi
, and
K.
Kim
,
2006 IEEE Nanotechnology Materials and Devices Conference 2006 IEEE, 3-25 October, Gyeongju, Korea
(
IEEE
New York, NY,
2006
), Vol. 1, p. 194.
30.
L. J.
Zhao
 et al,
AIP Conf. Proc.
893
,
45
(
2007
).
31.
A. M.
Darr
,
A. M.
Loveless
, and
A. L.
Garner
,
Appl. Phys. Lett.
114
,
014103
(
2019
).
32.
M.
Zubair
,
Y. S.
Ang
, and
L. L.
Ang
,
IEEE Transactions on Electron Devices
,
65
(
6
),
2089
(
2018
)
33.
R. G.
Forbes
and
J. H. B.
Deane
,
Proc. R. Soc. A
463
,
2907
(
2007
).
34.
G.
Tripathi
,
J.
Ludwick
,
M.
Cahay
, and
K. L.
Jensen
,
J. Appl. Phys.
128
,
025107
(
2020
).
35.
W. P.
Dyke
,
J. P.
Barbour
,
E. E.
Martin
, and
J. K.
Trolan
,
Phys. Rev.
99
,
1192
(
1955
).
36.
S. A.
Guerrera
,
L. F.
Velasquez-Garcia
, and
A. I.
Akinwande
,
IEEE Trans. Electron Devices
59
,
2524
(
2012
).
37.
F.
Giubileo
,
A. D.
Bartolomeo
,
L.
Iemmo
,
G.
Luongo
,
M.
Passacantando
,
E.
Koivusalo
,
T. V.
Hakkarainen
, and
M.
Guina
,
Nanomaterials
7
,
275
(
2017
).
38.
I.
Rawal
,
L.
Kumar
,
R. K.
Tripathi
, and
O. S.
Panwar
,
ACS Omega
2
,
7515
(
2017
).
39.
L.
Wang
,
L.
Jiang
,
T.
Zhang
,
F.
Gao
,
S.
Chen
, and
W.
Yang
,
J. Mater. Chem. C
7
,
13748
(
2019
).
40.
Z.
Du
,
F.
Jiang
,
J.
Zheng
,
S.
Chen
,
F.
Gao
,
J.
Teng
,
D.
Fu
,
H.
Zhang
, and
W.
Yang
,
J. Mater. Chem. C
8
,
5156
(
2020
).
41.
R.
Chen
,
Y.
Huang
,
Y.
Liang
,
C.
Hsieh
, and
D.
Tsai
,
Appl. Phys. Lett.
84
,
1552
(
2004
).
42.
Y. J.
Chen
,
Q. H.
Li
,
Y. X.
Liang
,
T. H.
Wang
,
Q.
Zhao
, and
D. P.
Yu
,
Appl. Phys. Lett.
85
,
5682
(
2004
).
43.
F.
Giubileo
,
A. D.
Bartolomeo
,
Y.
Zhong
,
S.
Zhao
, and
M.
Passacantando
,
Nanotechnology
31
,
475702
(
2020
).
You do not currently have access to this content.