The Schwarz-Christoffel transformation is used to analytically evaluate the Field Enhancement Factor (FEF) in the vicinity of the apex of two isosceles triangular emitters close to each other. It is shown that the fractional reduction between the apex-FEF of a single triangular emitter and this same FEF evaluated when another identical emitter is placed close to it, δ, may be well described by an exponential or a power-law behavior involving the ratio between the distance and the height of the emitters and/or their aspect-ratios at different regimes. This way the analytical model presented here intends to investigate the existence of universal depolarization laws for non-cylindrical emitters used in different scientific and technological applications involving large area field emitters. The results obtained here show a quadratic power-law decay of the fractional reduction with respect to the ratio between the distance and the height of the emitters for asymptotically large distances between them. This differs from the cubic decay frequently verified in the literature for three-dimensional structures but the robustness of this exponent, which remains independent of the aspect-ratio of the emitters, is also reinforced.

1.
H.
Jeffreys
,
Proc. London Math. Soc.
s2–23
,
428
(
1925
).
2.
R. H.
Fowler
and
L.
Nordheim
,
Proc. R. Soc. London, Ser. A
119
,
173
(
1928
).
3.
R. E.
Burgess
,
H.
Kroemer
, and
J. M.
Houston
,
Phys. Rev.
90
,
515
(
1953
).
4.
E. L.
Murphy
and
R. H.
Good
,
Phys. Rev.
102
,
1464
(
1956
).
5.
M. T.
Cole
,
M.
Mann
,
K. B.
Teo
, and
W. I.
Milne
, in Emerging Nanotechnologies for Manufacturing, Micro and Nano Technologies, 2nd ed., edited by W. Ahmed and M. J. Jackson (William Andrew, Boston, MA, 2015).
6.
W. S.
Graves
,
F. X. K.
Artner
,
D. E.
Moncton
, and
P.
Piot
,
Phys. Rev. Lett.
108
,
263904
(
2012
).
7.
T.
Akashi
et al.,
Appl. Phys. Lett.
106
,
074101
(
2015
).
8.
J. W.
Lewellen
and
J.
Noonan
,
Phys. Rev. Spec. Top. Accel. Beams
8
,
033502
(
2005
).
9.
H. C.
Miller
,
IEEE Trans. Electr. Insul.
24
,
765
(
1989
).
10.
K. L.
Jensen
,
D. A.
Shiffler
,
J. J.
Petillo
,
Z.
Pan
, and
J. W.
Luginsland
,
Phys. Rev. ST Accel. Beams
17
,
043402
(
2014
).
11.
J. T.
Holgate
and
M.
Coppins
,
Phys. Rev. Appl.
7
,
044019
(
2017
).
12.
F.
Urban
,
M.
Passacantando
,
F.
Giubileo
,
L.
Lemmo
, and
A.
Di Bartolomeo
,
Nanomaterials
8
,
151
(
2018
).
13.
K. B. K.
Teo
et al.,
Nature
437
,
968
(
2005
).
14.
R. J.
Parmee
,
C. M.
Collins
,
W. I.
Milne
, and
M. T.
Cole
,
Nano. Convergence
2
,
1
(
2015
).
15.
T. A.
de Assis
and
F. F.
Dall’Agnol
,
J. Appl. Phys.
121
,
014503
(
2017
).
16.
F. F.
Dall’Agnol
and
T. A.
de Assis
,
J. Phys.: Condens. Matter
29
,
40LT01
(
2017
).
17.
K. L.
Jensen
,
D. A.
Shiffler
,
J. R.
Harris
, and
J. J.
Petillo
,
AIP Adv.
6
,
065005
(
2016
).
18.
J. R.
Harris
and
K. L.
Jensen
,
J. Appl. Phys.
125
,
215306
(
2019
).
19.
J. R.
Harris
,
D. A.
Shiffler
,
K. L.
Jensen
, and
J. W.
Lewellen
,
J. Appl. Phys.
125
,
215307
(
2019
).
20.
R.
Miller
,
Y. Y.
Lau
, and
J. H.
Booske
,
Appl. Phys. Lett.
91
,
074105
(
2007
).
21.
R.
Miller
,
Y. Y.
Lau
, and
J. H.
Booske
,
J. Appl. Phys.
106
,
104903
(
2009
).
22.
E.
Marcelino
,
T. A.
de Assis
, and
C. M. C.
de Castilho
,
J. Vac. Sci. Technol. B
35
,
051801
(
2017
).
23.
E.
Marcelino
,
T. A.
de Assis
, and
C. M. C.
de Castilho
,
J. Appl. Phys.
123
,
124302
(
2018
).
24.
E.
Marcelino
,
T. A.
de Assis
,
C. M. C.
de Castilho
, and
R. F. S.
Andrade
,
Phys. Rev. Appl.
11
,
014012
(
2019
).
25.
E. M.
de Carvalho Neto
,
J. Appl. Phys.
126
,
244502
(
2019
).
26.
T. A.
de Assis
and
F.
Dall’ Agnol
,
Nanotechnology
27
,
44LT01
(
2016
).
27.
28.
J. Y.
Huang
,
K.
Kempa
,
S. H.
Jo
,
S.
Chen
, and
Z. F.
Ren
,
Appl. Phys. Lett.
87
,
053110
(
2005
).
29.
D. R.
Whaley
,
B. M.
Gannon
,
C. R.
Smith
,
C. M.
Armstrong
, and
C. A.
Spindt
,
IEEE Trans. Plasma Sci.
28
,
727
(
2000
).
30.
A.
Basu
,
M. E.
Swanwick
,
A. A.
Fomani
, and
L. F.
Velásquez-García
,
J. Phys. D: Appl. Phys.
48
,
225501
(
2015
).
31.
Carbon Nanotube and Related Field Emitters, edited by Y. Saito (Wiley-VCH, Weinheim, 2010).
32.
Y.
Li
,
Y.
Sun
, and
J. T. W.
Yeow
,
Nanotechnology
26
,
242001
(
2015
).
33.
T. A.
de Assis
and
F. F.
Dall’Agnol
,
J. Phys.: Condens. Matter
30
,
195301
(
2018
).
34.
C. A.
Spindt
,
I.
Brodie
,
L.
Humphrey
, and
E. R.
Westerberg
,
J. Appl. Phys.
47
,
5248
(
1976
).
35.
A.
Chatziafratis
and
J. P.
Xanthakis
,
J. Electron Spectrosc. Relat. Phenom.
241
,
146871
(
2020
).
36.
R. G.
Forbes
,
Proc. R. Soc. London, Ser. A
469
,
20130271
(
2013
).
37.
R. G.
Forbes
,
J. H. B.
Deane
,
A.
Fischer
, and
M. S.
Mousa
,
Jordan J. Phys.
8
,
125
(
2015
).
38.
J. R.
Harris
,
K. L.
Jensen
, and
D. A.
Shiffler
,
J. Appl. Phys.
119
,
043301
(
2016
).
39.
J. R.
Harris
,
K. L.
Jensen
, and
D. A.
Shiffler
,
J. Phys. D: Appl. Phys.
48
,
385203
(
2015
).
40.
J. R.
Harris
,
K. L.
Jensen
,
D. A.
Shiffler
, and
J. J.
Petillo
,
Appl. Phys. Lett.
106
,
201603
(
2015
).
41.
W. W.
Tang
,
D. A.
Shiffler
,
J. R.
Harris
,
K. L.
Jensen
,
K.
Golby
,
M.
LaCour
, and
T.
Knowles
,
AIP Adv.
6
,
095007
(
2016
).
42.
R. G.
Forbes
,
J. Appl. Phys.
120
,
054302
(
2016
).
43.
A. S.
de Souza
and
T. A.
de Assis
,
J. Appl. Phys.
127
,
045304
(
2020
).
44.
E.
Marcelino
,
T. A.
de Assis
, and
C. M. C.
de Castilho
,
J. Appl. Phys.
123
,
124302
(
2019
).
45.
J.-M.
Bonard
,
N.
Weiss
,
H.
Kind
,
T.
Stöckli
,
L.
Forró
,
K.
Kern
, and
A.
Châtelain
,
Adv. Mater.
13
,
184
(
2001
).
46.
S. H.
Jo
,
Y.
Tu
,
Z. P.
Huang
,
D. L.
Carnahan
,
D. Z.
Wang
, and
Z. F.
Ren
,
Appl. Phys. Lett.
82
,
3520
(
2003
).
47.
J. R.
Harris
,
K. L.
Jensen
, and
D. A.
Shiffler
,
AIP Adv.
5
,
087182
(
2015
).
48.
F. F.
Dall’Agnol
,
T. A.
de Assis
, and
R. G.
Forbes
,
J. Phys.: Condens. Matter
30
,
375703
(
2018
).
49.
D.
Biswas
and
R.
Rudra
,
Phys. Plasmas
25
,
083105
(
2018
).
50.
J.
Brown
and
R.
Churchill
,
Complex Variables and Applications, Brown and Churchill Series
(
McGraw-Hill
,
New York
,
2013
).
51.
F.
Hildebrand
,
Advanced Calculus for Applications
(
Prentice-Hall
,
Hoboken, NJ
,
1962
).
52.
B.
Riemann
, “
Grundlagen für eine allgemeine theorie fer functionen einer veränderlichen complexen grösse
,”
Doctoral thesis, University of Göttingen
,
Göttingen
,
1851
.
You do not currently have access to this content.