The unique properties of superhydrophobic surfaces have already been widely introduced into many applications and play a more and more important role in our daily life. However, different wetting states will lead to different properties and performances so that distinguishing the wetting states is essential. Until now, as it lacks an accurate and nondestructive technology to test the wetting states in real time, this prevents the study of superhydrophobic phenomena and their applications. Although this has already caught the attention of the scientific community, there is still no successful solution presented yet. Here, we develop a nondestructive in situ optical technology based on characterizing the transmission spectrum of the superhydrophobic surfaces, which is capable of distinguishing the different wetting states such as the Cassie–Baxter state, the mixed wetting state, and the Wenzel state. By using the finite-difference time-domain method, field distribution and transmission spectrum of the superhydrophobic surfaces can be simulated. The experimental data fit well with simulation data. All the results prove the feasibility of the new optical technology to characterize wetting states.

1.
M.
Nosonovsky
and
B.
Bhushan
,
Microelectron. Eng.
84
,
382
(
2007
).
2.
B.
Bhushan
and
Y. C.
Jung
,
Ultramicroscopy
107
,
1033
(
2007
).
3.
Z.
Yoshimitsu
,
A.
Nakajima
,
T.
Watanabe
, and
K.
Hashimoto
,
Langmuir
18
,
5818
(
2002
).
4.
Z. G.
Guo
,
F.
Zhou
,
J. C.
Hao
, and
W. M.
Liu
,
J. Am. Chem. Soc.
127
,
15670
(
2005
).
5.
C.
Lee
,
C. H.
Choi
, and
C. J.
Kim
,
Exp. Fluids
57
,
176
(
2016
).
6.
T. N.
Krupenkin
,
J. A.
Taylor
,
T. M.
Schneider
, and
S.
Yang
,
Langmuir
20
,
3824
(
2004
).
7.
A.
Lafuma
and
D.
Quéré
,
Nat. Mater.
2
,
457
(
2003
).
8.
A. B. D.
Cassie
and
S.
Baxter
,
Trans. Faraday Soc.
40
,
546
(
1944
).
9.
R. N.
Wenzel
,
Ind. Eng. Chem.
28
,
988
(
1936
).
10.
E.
Bormashenko
,
Adv. Colloid Interface Sci.
222
,
92
(
2015
).
11.
C.
Bruel
,
S.
Queffeulou
,
T.
Darlow
,
N.
Virgilio
,
J. R.
Tavares
, and
G. S.
Patience
,
Can. J. Chem. Eng.
97
,
832
(
2019
).
12.
13.
M.
Miwa
,
A.
Nakajima
,
A.
Fujishima
,
K.
Hashimoto
, and
T.
Watanabe
,
Langmuir
16
,
5754
(
2000
).
14.
H.
You
and
A. J.
Steckl
,
Appl. Phys. Lett.
97
,
023514
(
2010
).
15.
B.
Sun
,
K.
Zhou
,
Y.
Lao
,
J.
Heikenfeld
, and
W.
Cheng
,
Appl. Phys. Lett.
91
,
011106
(
2007
).
16.
R. A.
Hayes
and
B. J.
Feenstra
,
Nature
425
,
383
(
2003
).
17.
H.
Liu
,
Y.
Yao
,
Y.
Wang
, and
W.
Wu
,
J. Vac. Sci. Technol. B
32
,
06FE04
(
2014
).
18.
M.
Dhindsa
,
J.
Heikenfeld
,
S.
Kwon
,
J.
Park
,
P. D.
Rack
, and
I.
Papautsky
,
Lab Chip
10
,
832
(
2010
).
19.
F.
Ceyssens
,
D.
Witters
,
T.
Van Grimbergen
,
K.
Knez
,
J.
Lammertyn
, and
R.
Puers
,
Sens. Actuators, B
181
,
166
(
2013
).
20.
L.-Y.
Li
,
R.-Y.
Yuan
,
J.-H.
Wang
,
L.
Li
, and
Q.-H.
Wang
,
Sci. Rep.
9
,
13062
(
2019
).
21.
B. H. W.
Hendriks
,
S.
Kuiper
,
M. V.
As
,
C. A.
Renders
, and
T. W.
Tukker
,
Opt. Rev.
12
,
255
(
2005
).
22.
S.
Terrab
,
A. M.
Watson
,
C.
Roath
,
J. T.
Gopinath
, and
V. M.
Bright
,
Opt. Express
23
,
25838
(
2015
).
23.
J.-Y.
Choi
,
J.-H.
Jang
, and
S.-I.
Kim
, Google patents (February 2, 2010).
24.
B.
Berge
and
J.
Peseux
,
Eur. Phys. J. E
3
,
159
(
2000
).
25.
J.
Heikenfeld
and
M.
Dhindsa
,
J. Adhes. Sci. Technol.
22
,
319
(
2008
).
26.
M.
Barberoglou
,
V.
Zorba
,
A.
Pagozidis
,
C.
Fotakis
, and
E.
Stratakis
,
Langmuir
26
,
13007
(
2010
).
27.
P. R.
Jones
 et al.,
Sci. Rep.
5
,
1
(
2015
).
28.
K. M. T.
Ahmmed
and
A.-M.
Kietzig
,
Soft Matter
12
,
4912
(
2016
).
29.
J.
Jeevahan
,
M.
Chandrasekaran
,
G.
Britto Joseph
,
R. B.
Durairaj
, and
G.
Mageshwaran
,
J. Coat. Technol. Res.
15
,
231
(
2018
).
30.
R. S.
Voronov
,
D. V.
Papavassiliou
, and
L. L.
Lee
,
Ind. Eng. Chem. Res.
47
,
2455
(
2008
).
31.
Z.
Li
 et al.,
Nano Lett.
9
,
2306
(
2009
).
32.
G.
Vazquez
,
E.
Alvarez
, and
J. M.
Navaza
,
J. Chem. Eng. Data
40
,
611
(
1995
).
33.
H.
Yang
 et al.,
Nanophotonics
9
,
1401
1410
(
2020
).
34.
A. K.
Metya
,
S.
Khan
, and
J. K.
Singh
,
J. Phys. Chem. C
118
,
4113
(
2014
).
35.
C. A.
Schneider
,
W. S.
Rasband
, and
K. W.
Eliceiri
,
Nat. Methods
9
,
671
(
2012
).
36.
J. L.
Campbell
,
M.
Breedon
,
K.
Latham
, and
K.
Kalantar-Zadeh
,
Langmuir
24
,
5091
(
2008
).
37.
M. S.
Dhindsa
,
N. R.
Smith
,
J.
Heikenfeld
,
P. D.
Rack
,
J. D.
Fowlkes
,
M. J.
Doktycz
,
A. V.
Melechko
, and
M. L.
Simpson
,
Langmuir
22
,
9030
(
2006
).
38.
F.
Lapierre
,
P.
Brunet
,
Y.
Coffinier
,
V.
Thomy
,
R.
Blossey
, and
R.
Boukherroub
,
Faraday Discuss.
146
,
125
(
2010
).
39.
F.
Lapierre
,
V.
Thomy
,
Y.
Coffinier
,
R.
Blossey
, and
R.
Boukherroub
,
Langmuir
25
,
6551
(
2009
).
40.
G.
McHale
,
D. L.
Herbertson
,
S. J.
Elliott
,
N. J.
Shirtcliffe
, and
M. I.
Newton
,
Langmuir
23
,
918
(
2007
).
41.
M. I.
Newton
,
D. L.
Herbertson
,
S. J.
Elliott
,
N. J.
Shirtcliffe
, and
G.
McHale
,
J. Phys. D: Appl. Phys.
40
,
20
(
2006
).
42.
N.
Verplanck
,
E.
Galopin
,
J.-C.
Camart
,
V.
Thomy
,
Y.
Coffinier
, and
R.
Boukherroub
,
Nano Lett.
7
,
813
(
2007
).
43.
R. J.
Vrancken
,
H.
Kusumaatmaja
,
K.
Hermans
,
A. M.
Prenen
,
O.
Pierre-Louis
,
C. W. M.
Bastiaansen
, and
D. J.
Broer
,
Langmuir
26
,
3335
(
2010
).
44.
L.
Xu
,
Q.
Ye
,
X.
Lu
, and
Q.
Lu
,
ACS Appl. Mater. Interfaces
6
,
14736
(
2014
).
45.
M. E.
Kavousanakis
,
N. T.
Chamakos
,
K.
Ellinas
,
A.
Tserepi
,
E.
Gogolides
, and
A. G.
Papathanasiou
,
Langmuir
34
,
4173
(
2018
).
46.
H.
Liu
 et al.,
Adv. Opt. Mater.
7
,
1801639
(
2019
).
47.
J.
Han
,
M.
Cai
,
Y.
Lin
,
W.
Liu
,
X.
Luo
,
H.
Zhang
,
K.
Wang
, and
M.
Zhong
,
RSC Adv.
8
,
6733
(
2018
).
48.
C.-V.
Ngo
,
G.
Davaasuren
,
H.-S.
Oh
, and
D.-M.
Chun
,
Int. J. Precis. Eng. Manuf.
16
,
1347
(
2015
).
49.
G.-y.
Li
,
X.-p.
Li
,
H.
Wang
,
Z.-q.
Yang
,
J.-y.
Yao
, and
G.-f.
Ding
,
Microelectron. Eng.
95
,
130
(
2012
).
50.
D. L.
Herbertson
,
C. R.
Evans
,
N. J.
Shirtcliffe
,
G.
McHale
, and
M. I.
Newton
,
Sens. Actuators, A
130-131
,
189
(
2006
).
51.
S. Y.
Lee
,
Y.
Rahmawan
, and
S.
Yang
,
ACS Appl. Mater. Interfaces
7
,
24197
(
2015
).
52.
R. M. d.
Nascimento
,
C.
Cottin-Bizonne
,
C.
Pirat
, and
S. M. M.
Ramos
,
Langmuir
32
,
2005
(
2016
).
53.
R.
Roy
,
J. A.
Weibel
, and
S. V.
Garimella
,
Langmuir
34
,
12787
(
2018
).
You do not currently have access to this content.