Neural optoelectrodes can read and manipulate large numbers of neurons in vivo. However, state-of-the-art devices rely on either standard microfabrication materials (i.e., silicon and silicon nitride), which result in high scalability and throughput but cause severe brain damage due to implant stiffness, or polymeric devices, which are more compliant but whose scalability and implantation in the brain are challenging. Here, we merge the gap between silicon-based fabrication scalability and low (polymeric-like) stiffness by fabricating a nitride and oxide-based optoelectrode with a high density of sensing microelectrodes, passive photonic circuits, and a very small tip thickness (5 μm). We achieve this by removing all the silicon supporting material underneath the probe’s tip—while leaving only the nitride and glass optical ultrathin layers—through a single isotropic etch step. Our optoelectrode integrates 64 electrodes and multiple passive optical outputs, resulting in a cross-sectional area coefficient (the cross section divided by the number of sensors and light emitters) of 3.1—smaller than other optoelectrodes. It also combines a low bending stiffness (∼4.4 × 10−11 N m2), comparable or approaching several state-of-the-art polymeric optoelectrodes. We tested several mechanical insertions of our devices in vivo in rats and demonstrated that we can pierce the pia without using additional temporary supports.

1.
E.
Musk
,
J. Med. Internet Res.
21
,
e16194
(
2019
).
2.
E.
Krook-Magnuson
,
G. G.
Szabo
,
C.
Armstrong
,
M.
Oijala
, and
I.
Soltesz
,
eNeuro
1
,
ENEURO.0005-14.2014
(
2014
).
3.
U.
Chaudhary
,
N.
Birbaumer
, and
A.
Ramos-Murguialday
,
Nat. Rev. Neurol.
12
,
513
(
2016
).
4.
Z. J.
Huang
and
L.
Luo
,
Science
350
,
42
(
2015
).
5.
G.
Hong
and
C. M.
Lieber
,
Nat. Rev. Neurosci.
20
,
330
(
2019
).
6.
X.
Liu
,
S.
Ramirez
, and
S.
Tonegawa
,
Philos. Trans. R. Soc. B Biol. Sci.
369
,
20130142
(
2013
).
7.
Z.
Fekete
,
Sensors Actuators B Chem.
215
,
300
(
2015
).
8.
G.
Buzsáki
,
E.
Stark
,
A.
Berényi
,
D.
Khodagholy
,
D. R.
Kipke
,
E.
Yoon
, and
K.D.
Wise
,
Neuron
86
,
92
(
2015
).
9.
C. K.
Kim
,
A.
Adhikari
, and
K.
Deisseroth
,
Nat. Rev. Neurosci.
18
,
222
(
2017
).
10.
N.
McAlinden
,
D.
Massoubre
,
E.
Richardson
,
E.
Gu
,
S.
Sakata
,
M. D.
Dawson
, and
K.
Mathieson
,
Opt. Lett.
38
,
992
(
2013
).
11.
N.
Dong
,
R.
Berlinguer-Palmini
,
A.
Soltan
,
N.
Ponon
,
A.
O'Neil
,
A.
Travelyan
,
P.
Maaskant
,
P.
Degenaar
, and
X.
Sun
,
J. Biophotonics
11
,
e201700358
(
2018
).
12.
F.
Wu
,
E.
Stark
,
Pei-Cheng
Ku
,
K. D.
Wise
,
György
Buzsáki
, and
Euisik
Yoon
,
Neuron
88
,
1136
(
2015
).
13.
K.
Kim
 et al,
bioRxiv
(
2020
).
14.
F.
Pisanello
,
L.
Sileo
, and
M.
De Vittorio
,
Front. Neurosci.
10
,
1
(
2016
).
15.
V.
Lanzio
 et al,
Microsyst. Nanoeng.
7
,
40
(
2021
).
16.
V.
Lanzio
,
M.
Lorenzon
,
S.
Dhuey
,
C. F.
Pirri
,
A.
Lamberti
, and
S.
Cabrini
,
Nanotechnology
32
,
265201
(
2021
).
17.
V.
Lanzio
,
Melanie
West
,
Alexander
Koshelev
,
Gregory
Telian
,
Paolo
Micheletti
,
Raquel
Lambert
,
Scott
Dhuey
,
Hillel
Adesnik
, and
Simone
Sassolini
,
J. Micro/Nanolithogr. MEMS MOEMS
17
,
1
(
2018
).
18.
S.
Libbrecht
,
Luis
Hoffman
,
Marleen
Welkenhuysen
,
Chris
Van den Haute
,
Veerle
Baekelandt
,
Dries
Braeken
, and
Sebastian
Haesler
,
J. Neurophysiol.
120
,
149
(
2018
).
19.
A.
Mohanty
 et al,
Nat. Biomed. Eng.
4
,
223
(
2020
).
20.
E.
Shim
,
Y.
Chen
,
S.
Masmanidis
, and
M.
Li
,
Sci. Rep.
6
,
6
(
2016
).
21.
N. C.
Klapoetke
 et al,
Nat. Methods
11
,
338
(
2014
).
22.
C. M.
Lopez
,
Alexandru
Andrei
,
Srinjoy
Mitra
,
Marleen
Welkenhuysen
,
Wolfgang
Eberle
,
Carmen
Bartic
,
Robert
Puers
,
Refet Firat
Yazicioglu
, and
Georges G. E.
Gielen
,
IEEE J. Solid-State Circuits
49
,
248
(
2014
).
23.
C.
Mora Lopez
 et al,
IEEE Trans. Biomed. Circuits Syst.
11
,
510
(
2017
).
24.
E.
Segev
 et al,
Neurophotonics
4
,
011002
(
2016
).
25.
M. A.
Hopcroft
,
W. D.
Nix
, and
T. W.
Kenny
,
J. Microelectromech. Syst.
19
,
229
(
2010
).
26.
A.
Lecomte
,
E.
Descamps
, and
C.
Bergaud
,
J. Neural Eng.
15
,
031001
(
2018
).
27.
K.
Kampasi
,
I.
Ladner
,
J.
Zhou
,
A. C.
Soto
,
J.
Hernandez
,
S.
Patra
, and
R. U.
Haque
,
Mater. Lett.
285
,
129015
(
2021
).
28.
K.
Kampasi
,
Daniel F.
English
,
John
Seymour
,
Eran
Stark
,
Sam
McKenzie
,
Mihály
Vöröslakos
,
György
Buzsáki
,
Kensall D.
Wise
, and
Euisik
Yoon
,
Microsyst. Nanoeng.
4
,
1
(
2018
).
29.
J. M.
Lee
,
Dingchang
Lin
,
Ha-Reem
Kim
,
Young-Woo
Pyo
,
Guosong
Hong
,
Charles M.
Lieber
, and
Hong-Gyu
Park
,
Nano Lett.
21
,
3184
(
2021
).
30.
L.
Sileo
 et al,
Front. Neurosci.
12
,
771
(
2018
).
31.
F.
Pisanello
,
L.
Sileo
,
I. A.
Oldenburg
,
M.
Pisanello
,
L.
Martiradonna
,
J. A.
Assad
,
B. L.
Sabatini
, and
M.
De Vittorio
,
Neuron
82
,
1245
(
2014
).
32.
F.
Pisanello
 et al,
Nat. Neurosci.
20
,
1180
(
2017
).
33.
F.
Deku
 et al,
Micromachines
9
,
480
(
2018
).
34.
F.
Deku
,
Y.
Cohen
,
A.
Joshi-Imre
,
A.
Kanneganti
,
T. J.
Gardner
, and
S. F.
Cogan
,
J. Neural Eng.
15
,
016007
(
2018
).
35.
R. G.
Heideman
,
A.
Leinse
,
M.
Hoekman
,
F.
Schreuder
, and
F. H.
Falke
, “TriPleX™: The low loss passive photonics platform: Industrial applications through Multi Project Wafer runs,”
2014 IEEE Photonics Conference
, San Diego, CA, 12–16 October 2014 (IEEE, 2014), pp. 224–225.
36.
R. A.
Rahim
,
B.
Bais
,
B. Y.
Majlis
, and
G.
Sugandi
,
Microsyst. Technol.
19
,
905
(
2013
).
37.
D. H.
Szarowski
,
M. D.
Andersen
,
S.
Retterer
,
A. J.
Spence
,
M.
Isaacson
,
H. G.
Craighead
,
J. N.
Turner
, and
W.
Shain
,
Brain Res.
983
,
23
(
2003
).
38.
X.
Yang
,
Tao
Zhou
,
Theodore J.
Zwang
,
Guosong
Hong
,
Yunlong
Zhao
,
Robert D.
Viveros
,
Tian-Ming
Fu
,
Teng
Gao
, and
Charles M.
Lieber
,
Nat. Mater.
18
,
510
(
2019
).
39.
K.
Najafi
,
J.
Ji
, and
K. D.
Wise
,
IEEE Trans. Biomed. Eng.
37
,
1
(
1990
).
40.
W.
Fang
,
H. C.
Tsai
, and
C. Y.
Lo
,
Sens. Actuators A Phys.
77
,
21
(
1999
).
41.
C.-Y.
Lee
,
C.-H.
Tsai
,
L.-W.
Chen
,
L.-M.
Fu
, and
Y.-C.
Chen
,
Microsyst. Technol.
12
,
979
(
2006
).
42.
F.-D.
Chen
 et al,
Neurophotonics
8
,
025003
(
2021
).
43.
X.
Han
,
ACS Chem. Neurosci.
3
,
577
(
2012
).
44.
S. H.
Felix
,
K. G.
Shah
,
V. M.
Tolosa
,
H. J.
Sheth
,
A. C.
Tooker
,
T. L.
Delima
,
S. P.
Jadhav
,
L. M.
Frank
, and
S. S.
Pannu
,
JoVE J.
e50609
(
2013
).
45.
S.
Zhang
,
C.
Wang
,
C.
Linghu
,
S.
Wang
, and
J.
Song
,
J. Appl. Mech. Trans. ASME
88
,
010801
(
2021
).
46.
F.
Ceyssens
 et al,
Sens. Actuators B Chem.
284
,
369
(
2019
).
47.
48.
Y. K.
Lee
 et al,
ACS Appl. Mater. Interfaces
9
,
42633
(
2017
).
49.
S.-K.
Kang
,
Suk-Won
Hwang
,
Huanyu
Cheng
,
Sooyoun
Yu
,
Bong Hoon
Kim
,
Jae-Hwan
Kim
,
Yonggang
Huang
, and
John A.
Rogers
,
Adv. Funct. Mater.
24
,
4427
(
2014
).
50.
F.
Wu
,
E.
Stark
,
M.
Im
,
I. J.
Cho
,
E. S.
Yoon
,
G.
Buzsáki
,
K. D.
Wise
, and
E.
Yoon
,
J. Neural Eng.
10
,
056012
(
2013
).
51.
K.
Kim
,
M.
Vöröslakos
,
J. P.
Seymour
,
K. D.
Wise
,
G.
Buzsáki
, and
E.
Yoon
,
Nat. Commun.
11
,
1
(
2020
).
52.
S.
Park
 et al,
Nat. Neurosci.
20
,
612
(
2017
).
53.
F.
Pisano
,
Marco
Pisanello
,
Leonardo
Sileo
,
Antonio
Qualtieri
,
Bernardo L.
Sabatini
,
Massimo
De Vittorio
, and
Ferruccio
Pisanello
,
Microelectron. Eng.
195
,
41
(
2018
).
54.
W. D.
Sacher
 et al, “Beam-steering nanophotonic phased-array neural probes,” in
Conference on Lasers and Electro-Optics, OSA Technical Digest
, San Jose, California, 5–10 May 2019 (Optical Society of America, 2019), paper ATh4I.4.
You do not currently have access to this content.