Next to powders, inks, and microelectronics, many technologies that carry the attribute nano in their name are still waiting for their breakthrough and wide acceptance in engineering and industry. At least nanofabrication technologies are the subject of a vivid track in research and development in a variety of scientific fields but yet most of them are mainly invisible in everyday products. This paper aims to describe three inspiring examples of research work in the area of nanopatterning and systems integration at the micro-nano interface to motivate applications with new and unprecedented functionalities. The application examples comprise the fields of bio-inspired computing, optoelectronic sensing, and spectral imaging. First, network-based biocomputing uses biological agents in a nanopatterned fluidic channel system and opens horizons for energy-efficient solutions to complex mathematical problems. Second, nanoelectronic devices based on carbon nanotubes (CNTs) have emerged because of the outstanding mechanical, electronic, and optical properties of the CNTs. The adaptivity of nanostructures to the world of biological molecules and other nanoscopic building blocks such as quantum dots and nanoparticles enables novel, even personalized, devices and technical solutions. Third, early-on “nano” fame has been devoted to optical effects—the authors here discuss an advanced integrated micro-opto-mechanical system on a micromirror plate forming a Fabry–Pérot Interferometer.

1.
D. V.
Nicolau
, Jr.
 et al,
Proc. Natl. Acad. Sci. U.S.A.
113
,
2591
(
2016
).
2.
T.
Korten
,
S.
Diez
,
H.
Linke
,
D. V.
Nicolau
, Jr.
, and
H.
Kugler
,
New J. Phys.
23
,
085004
(
2021
).
3.
C.
Reuther
,
R.
Catalano
,
A.
Salhotra
,
V.
Vemula
,
T.
Korten
,
S.
Diez
, and
A.
Månsson
,
New J. Phys.
23
,
075007
(
2021
).
4.
A.
Salhotra
 et al,
New J. Phys.
23
,
085005
(
2021
).
5.
B.
Nitzsche
 et al,
Methods Cell Biol.
95
,
247
(
2010
).
6.
M. S.
Miranda
,
R.
Lyttleton
,
P. H.
Siu
,
S.
Diez
,
H.
Linke
, and
A. P.
Micolich
,
New J. Phys.
23
,
065003
(
2021
).
7.
R.
Bunk
,
M.
Sundberg
,
A.
Månsson
,
L. A.
Nicholls
,
P.
Omling
,
S.
Tågerud
, and
L.
Montelius
,
Nanotechnology
16
,
710
(
2005
).
8.
Y.
Hiratsuka
,
T.
Tada
,
K.
Oiwa
,
T.
Kanayama
, and
T. Q. P.
Uyeda
,
Biophys. J.
81
,
1555
(
2001
).
9.
F.
Lindberg
,
T.
Korten
,
A.
Löfstrand
,
M.
Rahman
,
M.
Graczyk
,
A.
Månsson
,
H.
Linke
, and
I.
Maximov
,
Mater. Res. Express
6
,
025057
(
2019
).
10.
M. G. L.
van den Heuvel
,
C. T.
Butcher
,
R. M. M.
Smeets
,
S.
Diez
, and
C.
Dekker
,
Nano Lett.
5
,
1117
(
2005
).
11.
T.
Korten
,
S.
Chaudhuri
,
E.
Tavkin
,
M.
Braun
, and
S.
Diez
,
IEEE Trans. Nanobiosci.
15
,
62
(
2016
).
12.
M.
Hartmann
,
J.
Tittmann-Otto
,
S.
Böttger
,
G.
Heldt
,
M.
Claus
,
S. E.
Schulz
,
M.
Schröter
, and
S.
Hermann
,
ACS Appl. Mater. Interfaces
12
(24),
27461
–27466 (
2020
).
13.
M.
Hartmann
,
S.
Hermann
,
P. F.
Marsh
,
C.
Rutherglen
,
D.
Wang
,
L.
Ding
,
L.-M.
Peng
,
M.
Claus
, and
M.
Schröter
,
IEEE Microw. Mag.
1
(1),
275
–287 (
2021
).
14.
S. J.
Tans
,
A. R. M.
Verschueren
, and
C.
Dekker
,
Nature
393
,
49
(
1998
).
15.
R.
Martel
,
T.
Schmidt
,
H. R.
Shea
,
T.
Hertel
, and
P.
Avouris
,
Appl. Phys. Lett.
73
,
2447
(
1998
).
16.
M.
Muoth
,
T.
Helbling
,
L.
Durrer
,
S. W.
Lee
,
C.
Roman
, and
C.
Hierold
,
Nat. Nanotechnol.
5
,
589
(
2010
).
17.
A.
Javey
,
J.
Guo
,
Q.
Wang
,
M.
Lundström
, and
H.
Dai
,
Nature
424
,
654
(
2003
).
18.
I.
Capek
,
Adv. Colloid Interface Sci.
150
,
63
(
2009
).
19.
K.
Yoshimura
,
C.
Langhammer
, and
B.
Dam
,
Mater. Res. Soc. Bull.
38
,
495
(
2013
).
20.
C. J.
Zhou
,
S.
Wang
,
J. L.
Sun
,
N.
Wei
,
L.-J.
Yang
,
Z. Y.
Zhang
,
J. H.
Liao
, and
L.-M.
Peng
,
Appl. Phys. Lett.
102
,
103102
(
2013
).
21.
S.
Mubeen
,
T.
Zhang
,
B. Y.
Yoo
,
M. A.
Deshusses
, and
N. V.
Myung
,
J. Phys. Chem. C
111
,
6321
(
2007
).
22.
S.
Mubeen
,
J.-H.
Lim
,
A.
Srirangarajan
,
A.
Mulchandani
,
M. A.
Deshusses
, and
N. V.
Myung
,
Electroanalysis
23
,
2687
(
2011
).
23.
M.
Freitag
,
Y.
Martin
,
J. A.
Misewich
,
R.
Martel
, and
P.
Avouris
,
Nano Lett.
3
,
1067
(
2003
).
24.
P.
Avouris
and
J.
Chen
,
Mater. Today
9
,
46
(
2006
).
25.
D. R.
Kauffman
and
A.
Star
,
J. Phys. Chem. C
112
,
4430
(
2008
).
26.
S.
Liang
 et al,
ACS Nano
11
,
549
(
2017
).
27.
C.
Koechlin
,
S.
Maine
,
S.
Rennesson
,
R.
Haidar
,
B.
Trétout
,
A.
Loiseau
, and
J. L.
Pelouard
,
C. R. Phys.
11
,
405
(
2010
).
28.
C.
Belgardt
,
T.
Blaudeck
,
C. v.
Borczyskowski
, and
H.
Graaf
,
Adv. Eng. Mater.
16
,
1090
(
2014
).
29.
S.
Hermann
,
H.
Fiedler
,
H. B.
Yu
,
S.
Loschek
,
J.
Bonitz
,
S. E.
Schulz
, and
T.
Gessner
,
IEEE Proc. Syst. Signals Dev. (SSD)
2012
,
6198090
.
30.
T.
Blaudeck
,
D.
Adner
,
S.
Hermann
,
H.
Lang
,
T.
Gessner
, and
S. E.
Schulz
,
Microelectron. Eng.
137
,
135
(
2015
).
31.
R. D.
Rodriguez
 et al,
RSC Adv.
6
,
15753
(
2016
).
32.
T.
Blaudeck
 et al,
Phys. Status Solidi A
216
,
1900030
(
2019
).
33.
A.
Preuß
 et al,
Chem. Eur. J.
26
,
2635
(
2020
).
34.
M.
Ebermann
,
N.
Neumann
,
K.
Hiller
,
M.
Seifert
,
M.
Meinig
, and
S.
Kurth
,
Proc. SPIE
8977
,
89770T
(
2014
).
35.
J. A.
Palmer
,
W.-T.
Hsieh
,
M.
Quijada
,
B.
Mott
,
E.
Akpan
,
G. L.
Brown
, Jr.
,
M. B.
Jacobson
, and
M. A.
Greenhouse
,
Proc. SPIE
6114
,
61140G
(
2006
).
36.
N. F.
Raley
,
D. R.
Ciarlo
,
J.-C.
Koo
,
B.
Beiriger
,
J.
Trujillo
,
C.
Yu
,
G.
Loomis
, and
R.
Chow
, in
Technical Digest IEEE Solid-State Sensor and Actuator Workshop
,
Hilton Head, SC
, 22–25 June 1992 (
IEEE
,
New York
,
1992
), pp.
170
173
.
37.
A.
Rissanen
,
A.
Langner
,
K. H.
Viherkanto
, and
R.
Mannila
,
Proc. SPIE
9375
,
93750J
(
2015
).
38.
C.
Helke
,
M.
Meinig
,
M.
Seifert
,
J.
Seiler
,
K.
Hiller
,
S.
Kurth
,
J.
Martin
, and
T.
Gessner
,
Proc. SPIE
9760
,
97600I
(
2016
).
39.
C.
Helke
,
K.
Hiller
,
J.-W.
Erben
,
D.
Reuter
,
M.
Meinig
,
S.
Kurth
,
C.
Nowak
,
H.
Kleinjans
, and
T.
Otto
,
Proc. SPIE
10446
,
104460J
(
2017
).
40.
G. Q.
Zhang
,
M.
Graef
, and
F.
van Roosmalen
, in
Proceedings of 56th IEEE Electronic Components and Technology Conference
, San Diego, CA, 30 May–2 June 2006 (IEEE, New York,
2006
), Vol. 2006, p.
1645639
.
41.
H. D.
Tong
,
S.-Y.
Chen
,
W. G.
van der Wiel
,
E. T.
Carlen
, and
A.
van den Berg
,
Nano Lett.
9
,
1015
(
2009
).
42.
S.
Aryal
,
H.-K.
Park
,
J. F.
Leary
, and
J.-H.
Key
,
Int. J. Nanomed.
14
,
6631
(
2019
).
43.
I. Y.
Wong
,
S. N.
Bhatia
, and
M.
Toner
,
Genes Dev.
27
,
2397
(
2013
).
44.
T.
Haruyama
,
Mater. Technol.
26
,
163
(
2011
).
45.
M.-L.
Cosnier
,
F.
Martin
,
A.
Bouamrani
,
F.
Berger
, and
P.
Caillat
,
IEEE Trans. Biomed. Eng.
56
,
2898
(
2009
).
46.
A.
Mazzatenta
,
M.
Giugliano
,
S.
Campidelli
,
L.
Gambazzi
,
L.
Businaro
,
H.
Markram
,
M.
Prato
, and
L.
Ballerini
,
Neuroscience
27
,
6931
(
2007
).
47.
E.
Mery
,
F.
Ricoul
,
N.
Sarrut
,
O.
Constantin
,
G.
Delapierre
,
J.
Garin
, and
F.
Vinet
,
Sens. Actuators, B
134
,
438
(
2008
).
48.
M. J.
Caldas
,
A.
Calzolari
, and
C. S.
Cucinotta
,
J. Appl. Phys.
101
,
081719
(
2007
).
49.
M.
Franz
 et al,
Nat. Chem.
13
,
828
(
2021
).
50.
E.
Sowade
,
T.
Blaudeck
, and
R. R.
Baumann
,
Nanoscale Res. Lett.
10
,
362
(
2015
).
51.
E.
Sowade
,
T.
Blaudeck
, and
R. R.
Baumann
,
Cryst. Growth Des.
16
,
1017
(
2016
).
52.
N. T.
Dinh
,
E.
Sowade
,
T.
Blaudeck
,
S.
Hermann
,
R. D.
Rodriguez
,
D. R. T.
Zahn
,
S. E.
Schulz
,
R. R.
Baumann
, and
O.
Kanoun
,
Carbon
96
,
382
(
2016
).
53.
M.
Rothammer
,
C.
Zollfrank
,
K.
Busch
, and
G.
von Freymann
,
Adv. Opt. Mater.
2100787
(
2021
).
You do not currently have access to this content.