Stretchable and flexible electronic applications require mechanically suitable electrical wiring. This article presents, for the first time, the microfabrication of photolithographically patterned microwiring on an electrospun nanofiber mat. The use of a photoresist-based technology allows for better than 10 μm pattern resolution on a good quality nanofiber mat, providing an order of magnitude smaller feature sizes than what has been published before. We demonstrate metallic wiring patterned from a 75 nm thick coating on top of the nanofiber mat. A silicone elastomer was incorporated to serve as a matrix material and form a composite substrate and an encapsulation layer on top of the microwiring. We demonstrate clean and anisotropic dry etching of the elastomer to open electrode sites that can be smaller than 10 μm in size. We speculate that these structures will be mechanically robust while being soft at the same time and provide the properties necessary for potential use in stretchable and flexible electronics.

1.
C.
Wang
,
C.
Wang
,
Z.
Huang
, and
S.
Xu
,
Adv. Mater.
30
,
1801368
(
2018
).
2.
J. A.
Rogers
,
T.
Someya
, and
Y.
Huang
,
Science
327
,
1603
(
2010
).
3.
C.
Dagdeviren
 et al.,
Nat. Mater.
14
,
728
(
2015
).
4.
W.
Yeo
 et al.,
Adv. Mater.
25
,
2773
(
2013
).
6.
G.
Schwartz
,
B.
Tee
,
J.
Mei
,
A.
Appleton
,
D.
Kim
,
H.
Wang
, and
Z.
Bao
,
Nat. Commun.
4
,
1859
(
2013
).
7.
A.
Miyamoto
 et al.,
Nat. Nanotechnol.
12
,
907
(
2017
).
8.
R.
Feiner
and
T.
Dvir
,
Nat. Rev. Mater.
3
,
17076
(
2017
).
9.
C.
Bettinger
,
M.
Ecker
,
T.
Kozai
,
G.
Malliaras
,
E.
Meng
, and
W.
Voit
,
MRS Bull.
45
,
655
(
2020
).
10.
J.
Rogers
,
M.
Lagally
, and
R.
Nuzzo
,
Nature
477
,
45
(
2011
).
12.
N.
Lu
,
C.
Lu
,
S.
Yang
, and
J.
Rogers
,
Adv. Func. Mater.
22
,
4044
(
2012
).
13.
B.
Ji
,
Z.
Xie
,
W.
Hong
,
C.
Jiang
,
Z.
Guo
,
L.
Wang
,
X.
Wang
,
B.
Yang
, and
J.
Liu
,
J. Materiomics
6
,
330
(
2020
).
14.
D.
Park
 et al.,
Nat. Commun.
5
,
5258
(
2014
).
15.
T.
Matsuo
 et al.,
Front. Syst. Neurosci.
5
,
34
(
2011
).
16.
J.
Kim
,
I.
Song
,
S.
Lee
,
H.
Choi
,
H.
Byeon
,
I.
Kim
, and
S.
Lee
,
IEEE Trans. Biomed. Eng.
60
,
3425
(
2013
).
17.
C.
Mills
,
J.
Escarŕe
,
E.
Engel
,
E.
Martinez
,
A.
Errachid
,
J.
Bertomeu
,
J.
Andreu
,
J.
Planell
, and
J.
Samitier
,
Nanotechnology
16
,
369
(
2005
).
18.
F.
Fan
,
Z.
Tian
, and
Z.
Wang
,
Nano Energy
1
,
328
(
2012
).
19.
L.
Kinner
,
M.
Bauch
,
R.
Wibowo
,
G.
Ligorio
,
E.
List-Kratochvil
, and
T.
Dimopoulos
,
Mater. Des.
168
,
107663
(
2019
).
20.
M.
Klatenbrunner
,
G.
kettlgruber
,
C.
Siket
,
R.
Schondiauer
, and
S.
Bauer
,
Adv. Mater.
22
,
2065
(
2010
).
21.
T.
Ware
,
D.
Simon
,
C.
Liu
,
T.
Musa
,
S.
Vasudevan
,
A.
Sloan
,
E.
Keefer
,
R.
Rennaker
, and
W.
Voit
,
J. Biomed. Mater. Res. Part B Appl. Biomater.
102
,
1
(
2014
).
22.
H.
Yuk
,
T.
Zhang
,
G.
Parada
,
X.
Liu
, and
X.
Zhao
,
Nat. Commun.
7
,
12028
(
2016
).
23.
H.
Yuk
,
S.
Lin
,
C.
Ma
,
M.
Takaffoli
,
N.
Fang
, and
X.
Zhao
,
Nat. Commun.
8
,
14230
(
2017
).
24.
C.
Kim
,
H.
Lee
,
K.
Oh
, and
J.
Sun
,
Science
353
,
682
(
2016
).
25.
N.
Bowden
,
S.
Brittain
,
A.
Evans
,
J.
Hutchinson
, and
G.
Whitesides
,
Nature
393
,
146
(
1998
).
26.
S.
Wang
,
J.
Song
,
D.
Kim
,
Y.
Huang
, and
J.
Rogers
,
Appl. Phys. Lett.
93
,
023126
(
2008
).
27.
D.
Kim
and
J.
Rogers
,
Adv. Mater.
20
,
4887
(
2008
).
28.
S.
Zhu
,
J.
So
,
R.
Mays
,
S.
Desai
,
W.
Barnes
,
B.
Pourdeyhimi
, and
M.
Dickey
,
Adv. Funct. Mater.
23
,
2308
(
2013
).
29.
T.
Widlund
,
S.
Yang
,
Y.
Hsu
, and
N.
Lu
,
Int. J. Solids Struct.
51
,
4026
(
2014
).
30.
M.
Rehman
and
J.
Rojas
,
Extreme Mech. Lett.
15
,
44
(
2017
).
32.
S.
Callens
and
A.
Zadpoor
,
Mater. Today
21
,
241
(
2018
).
33.
J.
Cho
,
M.
Keung
,
N.
Verellen
,
L.
Lagae
,
V.
Moshchalkov
,
P.
Van Dorpe
, and
D.
Gracias
,
Small
7
,
1943
(
2011
).
34.
R.
Kramer
,
C.
Majidi
, and
R. J.
Wood
,
Adv. Funct. Mater.
23
,
5292
(
2013
).
35.
W.
Shan
,
T.
Lu
, and
C.
Majidi
,
Smart Mater. Struct.
22
,
085005
(
2013
).
36.
J.
Oh
,
S.
Kim
,
H.
Baik
, and
U.
Jeong
,
Adv. Mater.
28
,
4455
(
2016
).
37.
S.
Hong
,
Y.
Lee
,
H.
Park
,
S.
Jin
,
Y.
Jeong
,
J.
Yun
,
I.
You
,
G.
Zi
, and
J.
Ha
,
Adv. Mater.
28
,
930
(
2016
).
38.
G.
Hao
,
F.
Hippauf
,
M.
Oschatz
,
F.
Wisser
,
A.
Leifert
,
W.
Nickel
,
N.
Mohamed-Noriega
,
Z.
Zheng
, and
S.
Kaskel
,
ACS Nano
8
,
7138
(
2014
).
39.
J.
Lee
,
H.
Kim
,
J.
Kim
,
I.
Kim
, and
S.
Lee
, in
Stretchable Bioelectronics for Medical Devices and Systems
, edited by
J. A.
Rogers
,
R.
Ghaffari
, and
D.
Kim
(
Springer International Publishing
,
Cham
,
2016
), pp.
227
254
.
40.
H.
Wu
 et al.,
Nat. Nanotechnol.
8
,
421
(
2013
).
41.
S.
Lee
 et al.,
Nat. Nanotechnol.
14
,
156
(
2019
).
42.
A.
Hanif
,
A.
Bag
,
A.
Zabeeb
,
D.
Moon
,
S.
Kumar
,
S.
Shrivastava
, and
N.
Lee
,
Adv. Funct. Mater.
30
,
2003540
(
2020
).
43.
A.
Hanif
,
Q.
Trung
,
S.
Siddiqui
,
P.
Toi
, and
N.
Lee
,
ACS Appl. Mater. Interfaces
10
,
27297
(
2018
).
44.
T.
Rashid
,
R.
Gorga
, and
W.
Krause
,
Adv. Eng. Mater.
23
,
2100153
(
2021
).
45.
Y.
Wang
,
T.
Yokota
, and
T.
Someya
,
NPG Asia Mater.
13
,
22
(
2021
).
46.
B.
Sun
,
Y.
Long
,
Z.
Chen
,
S.
Liu
,
H.
Zhang
,
J.
Zhang
, and
W.
Han
,
J. Mater. Chem. C
2
,
1209
(
2014
).
47.
Z.
Tai
,
X.
Yan
,
J.
Lang
, and
Q.
Xue
,
J. Power Sources
199
,
373
(
2012
).
48.
T.
Yan
,
Z.
Wang
,
Y.
Wang
, and
Z.
Pan
,
Mater. Des.
143
,
214
(
2018
).
49.
M.
Yu
,
Z.
Wang
,
Y.
Wang
,
Y.
Dong
, and
J.
Qiu
,
Adv. Energy Mater.
7
,
1700018
(
2017
).
50.
X.
Xiao
 et al.,
Adv. Mater.
23
,
5440
(
2011
).
51.
P.
Hsu
,
H.
Wu
,
T.
Carney
,
M.
McDowell
,
Y.
Yang
,
E.
Garnett
,
M.
Li
,
L.
Hu
, and
Y.
Cui
,
ACS Nano
6
,
5150
(
2012
).
52.
H.
Li
,
W.
Pan
,
W.
Zhang
,
S.
Huang
, and
H.
Wu
,
Adv. Funct. Mater.
23
,
209
(
2013
).
53.
M.
Xue
,
Z.
Xie
,
L.
Zhang
,
X.
Ma
,
X.
Wu
,
Y.
Guo
,
W.
Song
,
Z.
Li
, and
T.
Cao
,
Nanoscale
3
,
2703
(
2011
).
54.
P.
Chavoshnejad
and
M.
Razavi
,
Sci. Rep.
10
,
7709
(
2020
).
55.
K.
Ralls
,
T.
Courtney
, and
J.
Wulff
,
Introduction to Materials Science and Engineering
(
John Wiley & Sons
, New York, Chichester, Brisbane, Toronto, Singapore,
1976
), p.
501
.
56.
K.
Fuchs
,
Math. Proc. Camb. Philos. Soc.
34(1), 100–108 (
1938
).
57.
58.
T.
Gilani
and
D.
Rabchuk
,
Can. J. Phys.
96
,
272
(
2017
).
59.
S.
Hill
,
W.
Qian
,
W.
Chen
, and
J.
Fu
,
Biomicrofluidics
10
,
054114
(
2016
).
60.
M.
Vlachopoulou
,
G.
Kokkoris
,
C.
Cardinaud
,
E.
Gogolides
, and
A.
Tserepi
,
Plasma Process. Polym.
10
,
29
(
2013
).
61.
D.
Szmigiel
,
C.
Hibert
,
A.
Bertsch
,
E.
Pamula
,
K.
Domanski
,
P.
Grabiec
,
P.
Prokaryn
,
A.
Scislowska-Czarnecka
, and
B.
Plytycz
,
Plasma Process. Polym.
5
,
246
(
2008
).
62.
W.
Quiros-Solano
 et al.,
Sci. Rep.
8
,
13524
(
2018
).
63.
T.
Maleki
,
G.
Chitnis
,
A.
Kim
, and
B.
Ziaie
,
J. Microelectromech. Syst.
21
, 859 (
2012
).
64.
Y.
Liu
,
Q.
Liu
,
Y.
Li
,
P.
Huang
,
J.
Yao
,
N.
Hu
, and
S.
Fu
,
App. Mater. Interfaces
12
,
30871
(
2020
).
You do not currently have access to this content.