Pattern transfer in an extreme ultraviolet lithography (EUVL) system requires reflective optical elements illuminated at oblique illumination angles. This, in combination with the three-dimensional effects at the mask, is the source of the so-called mask 3D (M3D) effects that include shadowing, best focus shifts, and contrast fading. Alternative mask absorbers at lower thickness possess the ability to extenuate the M3D effects and improve overall imaging performance. An approach to recognize candidate material combinations as alternative EUVL mask absorbers through dielectric constant modeling by using methods involving Wiener bounds and effective media approximation (EMA) is presented. Using EMA, several stoichiometrically stable binary alloys of refractory metals that may serve as attenuated phase shifting mask absorbers have been studied. The optical properties and thickness of each absorber candidate alloy in a standard EUV mask stack are optimized for imaging performance. The best performing alloys are characterized through rigorous 3D image modeling of near-field intensity and phase at varied illumination angles.

1.
B. W.
Smith
and
K.
Suzuki
,
Microlithography: Science and Technology
(
CRC
, Boca Raton, FL,
2020
).
2.
A.
Erdmann
,
P.
Evanschitzky
,
J. T.
Neumann
, and
P.
Graeupner
,
J. Micro-Nanolith. Mem.
15
,
021205
(
2016
).
3.
J.
Finders
,
L.
de Winter
, and
T.
Last
,
J. Micro-Nanolith. Mem.
15
,
021408
(
2016
).
4.
A.
Erdmann
,
P.
Evanschitzky
,
H.
Mesilhy
,
V.
Philipsen
,
E.
Hendrickx
, and
M.
Bauer
,
J. Micro-Nanolith. Mem.
18
,
011005
(
2018
).
5.
A.
Armeanu
,
V.
Philipsen
,
F.
Jiang
,
G.
Fenger
,
N.
Lafferty
,
W.
Gillijns
,
E.
Hendrickx
, and
J.
Sturtevant
,
Proc. SPIE
10809
,
108090G
(
2019
).
6.
R.
Sejpal
,
V.
Philipsen
,
A.
Armeanu
,
C. I.
Wei
,
W.
Gillijns
,
N.
Lafferty
,
G.
Fenger
, and
E.
Hendrickx
,
Proc. SPIE
11148,
111481B
(
2019
).
7.
V.
Philipsen
 et al.,
Proc. SPIE
10143,
1014310
(
2017
).
8.
J. A.
Dobrowolski
, “
Optical properties of films and coatings
,” in
Handbook of Optics
, 2nd ed., edited by
M.
Bass
(
McGraw-Hill
,
New York
,
1995
), Vol. 1.
9.
B. L.
Henke
,
E. M.
Gullikson
, and
J. C.
Davis
,
At. Data Nucl. Data Tables
54
,
181
(
1993
).
10.
C.
van Lare
,
F. J.
Timmermans
, and
J.
Finders
,
Proc. SPIE
11147,
111470D
(
2019
).
11.
C.
van Lare
,
F. J.
Timmermans
, and
J.
Finders
,
J. Micro-Nanolith. Mem.
19
,
024401
(
2020
).
12.
O.
Wiener
,
J. Math. Phys. CAMB
32
,
507
(
1912
).
13.
A.
Bourov
, “Optical properties of materials for 157 nm lithography,” Ph.D. thesis (Rochester Institute of Technology, 2003).
14.
J. C. M.
Garnett
and
J.
Larmor
,
Philos. Trans. R. Soc. London A
203
,
385
(
1904
).
15.
D. A. G.
Bruggeman
,
Ann. Phys.
416
,
636
(
1935
).
16.
G. A.
Niklasson
,
C. G.
Granqvist
, and
O.
Hunderi
,
Appl. Opt.
20
,
26
(
1981
).
17.
D. E.
Aspnes
,
Thin Solid Films
89
,
249
(
1982
).
18.
W. A.
Goddard
 III
,
D.
Brenner
,
S. E.
Lyshevski
, and
G. J.
Iafrate
,
Handbook of Nanoscience, Engineering, and Technology
(
CRC
, Boca Raton, FL,
2018
).
19.
H.
Okamoto
,
ASM Handbook
(
ASM International
,
Materials Park
,
OH
,
2010
).
20.
V.
Luong
,
V.
Philipsen
,
E.
Hendrickx
,
K.
Opsomer
,
C.
Detavernier
,
C.
Laubis
,
F.
Scholze
, and
M.
Heyns
,
Appl. Sci.
8
,
521
(
2018
).
22.
H.
Mesilhy
,
P.
Evanschitzky
,
G.
Bottiglieri
,
E.
van Setten
,
T.
Fliervoet
, and
A.
Erdmann
,
Proc. SPIE
11323,
1132316
(
2020
).
23.
F. J.
Timmermans
,
C.
van Lare
, and
J.
Finders
,
Proc. SPIE
11177,
111770Y
(
2019
).
24.
C.
van Lare
,
F. J.
Timmermans
,
J.
Finders
,
O.
Romanets
,
C. W.
Man
,
P.
van Adrichem
,
Y.
Ikebe
,
T.
Aizawa
, and
T.
Onoue
,
J. Micro-Nanolith. Mem.
20
,
021006
(
2021
).
25.
T.
Fühner
,
T.
Schnattinger
,
G.
Ardelean
, and
A.
Erdmann
,
Proc. SPIE
6520,
65203F
(
2007
).
26.
Fraunhofer Institute for Integrated Systems and Device Technology IISB, https://www.iisb.fraunhofer.de/en/research_areas/simulation/lithography.html.
You do not currently have access to this content.