NanoCarb is a miniature Fourier transform imaging spectrometer dedicated to the measurement of atmospheric CO2 and CH4. The key element of NanoCarb is an array of Fabry–Perot microinterferometers having a stepcase shape. Lateral dimensions and height of each step depend on the used material, the focusing lenses, and the targeted optical path difference to be measured. In this paper, we developed a grayscale lithography process for a large surface patterning with high vertical resolution. This process is combined with plasma etching to transfer the as-obtained resist patterns into the silicon substrate. This method is an efficient and quick way for the realization of such arrays into silicon. A low contrast resist (ma-P1225G) was used for better control of the step height, and we investigated the effect of two annealing processes on the contrast curve slope: the soft bake and the postexposure bake. Therefore, combining the two processes leads to a 20 nm step height resolution in resist and 50 nm in silicon.

1.
SCARBO project website
, see https://Scarbo-H2020.Eu/.
2.
S.
Gousset
,
E.
Le Coarer
,
N.
Guérineau
,
L.
Croizé
,
T.
Laveille
, and
Y.
Ferrec
,
Proc. SPIE
10562
,
105624U
(
2017
).
3.
Y.
Ferrec
,
G.
Bonnery
,
L.
Brooker
,
L.
Croizé
,
S.
Gousset
, and
E.
Le Coarer
,
Proc. SPIE
11180
,
1118021
(
2017
).
4.
S.
Gousset
,
L.
Croize
,
E.
Le Coarer
,
Y.
Ferrec
,
J.
Rodrigo-Rodrigo
, and
L.
Brooker
,
CEAS Space J.
11
,
507
(
2019
).
5.
S.
Gousset
,
L.
Croizé
,
E.
Le Coarer
,
Y.
Ferrec
, and
L.
Brooker
,
Proc. SPIE
11180
,
111803Q
(
2017
).
6.
H.
Ehrhardt
,
S.
Gousset
,
J.
Boussey
,
M.
Panabière
,
E.
Le Coarer
,
L.
Croizé
,
Y.
Ferrec
, and
L.
Brooker
,
Proc. SPIE
11180
,
1118066
(
2017
).
7.
C. M.
Waits
,
R.
Ghodssi
,
M. H.
Ervin
, and
M.
Dubey
, in
2001 International Semiconductor Device Research Symposium Symposium Proceedings (Cat. No. 01EX497)
,
Washington
,
5–7 December 2001 (IEEE, New York, 2002)
, pp.
182
185
.
8.
H.-C.
Eckstein
,
M.
Stumpf
,
P.
Schleicher
,
S.
Kleinle
,
A.
Matthes
,
U. D.
Zeitner
, and
A.
Brauer
, in
2015 20th Microoptics Conference
,
Fukukoka, Japan
,
25-28 October 2015 (IEEE, New York, 2016)
, pp.
1
2
.
9.
C.
McKenna
,
K.
Walsh
,
M.
Crain
, and
J.
Lake
, in
2010 18th Biennial University Micro/Nano Symposium
,
West Lafayette
,
IN, 28 June-1 July 2010 (IEEE, New York, 2010)
, pp.
1
4
.
10.
A.
Grushina
,
Adv. Opt. Technol.
8
,
163
(
2019
).
11.
J.
Kim
,
D. C.
Joy
, and
S.-Y.
Lee
,
Microelectron. Eng.
84
,
2859
(
2007
).
12.
A.
Schleunitz
and
H.
Schift
,
Microelectron. Eng.
88
,
2736
(
2011
).
13.
A.
Naillon
,
H.
Massadi
,
R.
Courson
,
J.
Bekhit
,
L.
Seveno
,
P. F.
Calmon
,
M.
Prat
, and
P.
Joseph
,
Microfluid. Nanofluidics
21
,
131
(
2017
).
14.
R. R.
Benoit
,
D. M.
Jordan
,
G. L.
Smith
,
R. G.
Polcawich
,
S. S.
Bedair
, and
D. M.
Potrepka
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
65
,
889
(
2018
).
15.
A.
Rammohan
,
P. K.
Dwivedi
,
R.
Martinez-Duarte
,
H.
Katepalli
,
M. J.
Madou
, and
A.
Sharma
,
Sens. Actuators B Chem.
153
,
125
(
2011
).
16.
I.
Khazi
,
U.
Muthiah
, and
U.
Mescheder
,
Microelectron. Eng.
193
,
34
(
2018
).
17.
G.
Piaszenski
,
U.
Barth
,
A.
Rudzinski
,
A.
Rampe
,
A.
Fuchs
,
M.
Bender
, and
U.
Plachetka
,
Microelectron. Eng.
84
,
945
(
2007
).
18.
M.
Panabière
,
C.
Petite-Etienne
,
S.
Gousset
,
H.
Ehrhardt
, and
J.
Boussey
, in
JNTE 2019
,
Grenoble, France
,
25-27 November 2019 (Poster, 2019)
.
19.
T.
Mortelmans
,
D.
Kazazis
,
V. A.
Guzenko
,
C.
Padeste
,
T.
Braun
,
H.
Stahlberg
,
X.
Li
, and
Y.
Ekinci
,
Microelectron. Eng.
225
,
111272
(
2020
).
20.
N.
Unno
,
J.
Taniguchi
,
M.
Shizuno
, and
K.
Ishikawa
,
J. Vac. Sci. Technol. B
26
,
2390
(
2008
).
You do not currently have access to this content.