Sub-micrometer-thick lithium niobate on an insulator is a promising integrated photonic platform that provides optical field confinement and optical nonlinearity useful for state-of-the-art electro-optic modulators and wavelength converters. The fabrication of lithium niobate on insulator on a silicon substrate through ion slicing is advantageous for electronic-photonic integration but is challenging because of debonding and cracking due to the thermal expansion coefficient mismatch between silicon and lithium niobate. In this work, the fabrication of thin film lithium niobate on insulator on a silicon handle wafer is achieved, informed by structural modeling, and facilitated by accommodating for dissimilar wafer bows using a bonding apparatus. Structural finite element analysis of strain energy and stress, due to thermal expansion coefficient mismatch at elevated temperatures, is conducted. High strain energies and stresses that result in debonding and cracking, respectively, are studied through modeling and reduced by selecting optimized substrate thicknesses followed by an experimental technique to bond substrates with dissimilar bows. A lithium niobate thin film with a thickness of 800 nm is successfully transferred to an oxidized silicon wafer with a root mean square surface roughness of 5.6 nm.

1.
J.
Lu
,
J. B.
Surya
,
X.
Liu
,
A. W.
Bruch
,
Z.
Gong
,
Y.
Xu
, and
H. X.
Tang
,
Optica
6
,
1455
(
2019
).
2.
C.
Wang
,
M.
Zhang
,
X.
Chen
,
M.
Bertrand
,
A.
Shams-Ansari
,
S.
Chandrasekhar
,
P.
Winzer
, and
M.
Lončar
,
Nature
562
,
101
(
2018
).
3.
4.
M.
Leidinger
,
S.
Fieberg
,
N.
Waasem
,
F.
Kühnemann
,
K.
Buse
, and
I.
Breunig
,
Opt. Express
23
,
21690
(
2015
).
5.
R. S.
Weis
and
T. K.
Gaylord
,
Appl. Phys. A
37
,
191
(
1985
).
6.
M.
Wang
,
R.
Wu
,
J.
Lin
,
J.
Zhang
,
Z.
Fang
,
Z.
Chai
, and
Y.
Cheng
,
Quantum Eng.
1
,
e9
(
2019
).
7.
L.
Chen
,
J.
Nagy
, and
R. M.
Reano
,
Opt. Mater. Express
6
,
2460
(
2016
).
8.
D.
Pohl
,
A.
Messner
,
F.
Kaufmann
,
M. R.
Escalé
,
J.
Holzer
,
J.
Leuthold
, and
R.
Grange
,
IEEE Photonic. Technol. Lett.
33
,
85
(
2021
).
9.
A.
Boes
,
B.
Corcoran
,
L.
Chang
,
J.
Bowers
, and
A.
Mitchell
,
Laser Photonics Rev.
12
,
1700256
(
2018
).
10.
X.
Lansiaux
,
E.
Dogheche
,
D.
Remiens
,
M.
Guilloux-viry
,
A.
Perrin
, and
P.
Ruterana
,
J. Appl. Phys.
90
,
5274
(
2001
).
11.
Y.
Sakashita
and
H.
Segawa
,
J. Appl. Phys.
77
,
5995
(
1995
).
12.
Y.
Lu
,
P.
Dekker
, and
J. M.
Dawes
,
J. Cryst. Growth
311
,
1441
(
2009
).
13.
M.
Sumets
,
Lithium Niobate-Based Heterostructures
(
IOP Publishing
,
Bristol
,
2018
).
14.
C. C.
Wu
,
R. H.
Horng
,
D. S.
Wuu
,
T. N.
Chen
,
S. S.
Ho
,
C. J.
Ting
, and
H. Y.
Tsai
,
Jpn. J. Appl. Phys.
45
,
3822
(
2006
).
15.
J. T.
Nagy
and
R. M.
Reano
,
Opt. Mater. Express
9
,
3146
(
2019
).
16.
P.
Rabiei
and
P.
Gunter
,
Appl. Phys. Lett.
85
,
4603
(
2004
).
17.
I.
Szafraniak
,
I.
Radu
,
R.
Scholz
,
M.
Alexe
, and
U.
Gösele
,
Integr. Ferroelectr.
55
,
983
(
2003
).
18.
P.
Rabiei
,
J.
Ma
,
S.
Khan
,
J.
Chiles
, and
S.
Fathpour
,
Opt. Express
21
,
25573
(
2013
).
19.
H.
Han
,
L.
Cai
, and
H.
Hu
,
Opt. Mater.
42
,
47
(
2015
).
20.
M.
Levy
,
R. M.
Osgood
,
R.
Liu
,
L. E.
Cross
,
G. S.
Cargill
,
A.
Kumar
, and
H.
Bakhru
,
Appl. Phys. Lett.
73
,
2293
(
1998
).
21.
H. C.
Huang
,
J. I.
Dadap
,
O.
Gaathon
,
I. P.
Herman
,
R. M.
Osgood
,
S.
Bakhru
, and
H.
Bakhru
,
Opt. Mater. Express
3
,
126
(
2013
).
22.
Y.
Zimin
and
T.
Ueda
,
Sens. Actuators, A
234
,
232
(
2015
).
23.
C.
Wang
,
Y.
Li
,
Y.
Liu
,
Z.
Yuan
,
Y.
Tian
,
C.
Wang
, and
T.
Suga
,
ECS Trans.
77
,
143
(
2017
).
24.
O.
Moutanabbir
and
U.
Gösele
,
J. Electron. Mater.
39
,
482
(
2010
).
25.
K. T.
Turner
and
S. M.
Spearing
,
J. Appl. Phys.
92
,
7658
(
2002
).
26.
T.
Sun
,
M. Q.
Wang
,
Y. J.
Sun
,
B. P.
Wang
,
G. Y.
Zhang
,
Y. Z.
Tong
, and
H. L.
Duan
,
Chin. Phys. Lett.
28
,
047303
(
2011
).
27.
R.
Takigawa
,
T.
Tomimatsu
,
E.
Higurashi
, and
T.
Asano
,
Micromachines
10
,
136
(
2019
).
28.
R.
Takigawa
and
T.
Asano
,
Opt. Express
26
,
24413
(
2018
).
29.
R.
Takigawa
,
E.
Higurashi
,
T.
Suga
, and
T.
Kawanishi
,
Sens. Actuators, A
264
,
274
(
2017
).
30.
G.
Cha
,
R.
Gafiteanu
,
Q. Y.
Tong
, and
U.
Gösele
, in
Proceedings of the Second International Symposium on Semiconductor Wafer Bonding Science, Technology, and Applications
, Honolulu, HI, 16 May 1993 (The Electrochemical Society, Pennington, NJ,
1993
), Vol.
93
, p.
257
.
31.
M. A.
Hopcroft
,
W. D.
Nix
, and
T. W.
Kenny
,
J. Microelectromech. Syst.
19
,
229
(
2010
).
32.
A. S.
Andrushchak
,
B. G.
Mytsyk
,
H. P.
Laba
,
O. V.
Yurkevych
,
I. M.
Solskii
,
A. V.
Kityk
, and
B.
Sahraoui
,
J. Appl. Phys.
106
,
073510
(
2009
).
33.
E. P.
Popov
,
Engineering Mechanics of Solids
, 2nd ed. (
Prentice Hall
,
New Jersey
,
1999
).
34.
E. J.
Hearn
,
Mechanics of Materials 1
, 3rd ed. (
Butterworth-Heinemann
,
Oxford
,
1997
).
35.
M.
Gruber
,
I.
Kraleva
,
P.
Supancic
,
J.
Bielen
,
D.
Kiener
, and
R.
Bermejo
,
J. Eur. Ceram. Soc.
37
,
4397
(
2017
).
36.
Y.
Hirsh
,
S.
Gorfman
, and
D.
Sherman
,
Acta. Mater.
193
,
338
(
2020
).
37.
A.
Plößl
and
G.
Kräuter
,
Mater. Sci. Eng., R
25
,
1
(
1999
).
38.
X.
Ji
,
F. A. S.
Barbosa
,
S. P.
Roberts
,
A.
Dutt
,
J.
Cardenas
,
Y.
Okawachi
,
A.
Bryant
,
A. L.
Gaeta
, and
M.
Lipson
,
Optica
4
,
619
(
2017
).
39.
J. F.
Ziegler
,
M. D.
Ziegler
, and
J. P.
Biersack
,
Nucl. Instrum. Methods Phys. Res., Sect. B
268
,
1818
(
2010
).
40.
B. D.
Chalifoux
,
Y.
Yao
,
K. B.
Woller
,
R. K.
Heilmann
, and
M. L.
Schattenburg
,
Opt. Express
27
,
11182
(
2019
).
41.
D.
Tulli
,
D.
Janner
, and
V.
Pruneri
,
J. Micromech. Microeng.
21
,
085025
(
2011
).
42.
U.
Gösele
and
Q. Y.
Tong
,
Annu. Rev. Mater. Sci.
28
,
215
(
1998
).
43.
R.
Singh
,
I.
Radu
,
G.
Bruederl
,
C.
Eichler
,
V.
Haerle
,
U.
Gösele
, and
S. H.
Christiansen
,
Semicond. Sci. Technol.
22
,
418
(
2007
).
44.
Y. L.
Chao
,
R.
Scholz
,
M.
Reiche
,
U.
Gösele
, and
J. C. S.
Woo
,
Jpn. J. Appl. Phys.
45
,
8565
(
2006
).
45.
W.
Zhao
,
S.
Shiojiri
,
K.
Tobikawa
,
S.
Itoi
, and
S.
Sakai
, in
International Conference on Ion Implantation Technology
, Würzburg, Germany, 16 September 2018 (IEEE, Piscataway, NJ,
2018
), Vol.
22
, p.
299
.
46.
R.
Singh
,
S. H.
Christiansen
,
O.
Moutanabbir
, and
U.
Gösele
,
J. Electron. Mater.
39
,
2177
(
2010
).
You do not currently have access to this content.