β-Ga2O3 is gaining increasing attention from power device engineers owing to its wide bandgap and fabrication potential of low-cost, large-diameter substrates. Atomic-layer-deposited (ALD) Al2O3 has application potential for the gate insulation and surface passivation of β-Ga2O3 devices, which cannot incorporate a well-established SiO2/Si system. To improve the device performance and reliability, the effect of postdeposition annealing (PDA) on the gate insulation characteristics of Al/ALD-Al2O3/(001) β-Ga2O3 capacitors was comprehensively investigated. As in previous studies, PDA at 700 °C and higher sharply reduced the capacitor leakage current by three orders of magnitude. This threshold temperature was 100 °C lower than that for GaN devices. Space-charge-controlled field emission analysis revealed that the current reduction was achieved via conduction-band-offset enhancement from 1.45 to 2.2 eV. These changes were caused by Al2O3 crystallization, which started at 650 °C according to an x-ray diffraction analysis. Selective-area electron diffraction (SAED) patterns showed that the crystallized films comprised twinned γ-Al2O3, wherein the (111) planes are parallel to the sawtooth β-Ga2O3 (101) planes with epitaxial relations of γ-Al2O3[01¯1] || β-Ga2O3 [010] and γ-Al2O3[011¯] || β-Ga2O3 [010]. This epitaxy was realized by three-dimensional oxygen sublattice matching with relatively small misfits of less than 1%, 1%, and 8% along the γ-Al2O3[21¯1¯], [111], and [011¯] directions, respectively. Furthermore, the SAED patterns displayed diffraction spots specific to triaxially tripled γ-Al2O3. This is yet to be identified as δ-Al2O3. Contrary to expectations, PDA magnified the bias instability of β-Ga2O3 capacitors, supposedly owing to the Al2O3 and Ga2O3 solid-solution reaction, which contrasts with the previous significant improvement in GaN capacitors. However, PDA negligibly affected the β-Ga2O3 capacitor interface characteristics. This result also contrasts sharply with the previous results obtained for GaN capacitors that experienced a PDA-induced increase in both interface states and flat-band voltage. This apparent thermal stability of Al2O3/(001) β-Ga2O3 interface can be ascribed to the aforementioned small lattice misfit at the γ-Al2O3/(101) β-Ga2O3 interface, which contrasts with the 12% misfit at the γ-Al2O3/(0001) GaN interface. These findings form the foundation for developing technologies to enhance the performance and reliability of ALD-Al2O3/β-Ga2O3 devices. Specifically, based on them, a guideline for reducing the bias instability is proposed.

1.
B. J.
Baliga
,
Fundamentals of Power Semiconductor Devices
(
Springer
,
New York
,
2008
).
2.
M.
Higashiwaki
,
A.
Kuramata
,
H.
Murakami
, and
Y.
Kumagai
,
J. Phys. D: Appl. Phys.
50
,
333002
(
2017
).
3.
Gallium Oxide Technology, Devices and Applications
, edited by
S.
Pearton
,
F.
Ren
, and
M.
Mastro
(
Elsevier
,
Netherlands
,
2018
).
4.
M.
Orita
,
H.
Ohta
,
M.
Hirano
, and
H.
Hosono
,
Appl. Phys. Lett.
77
,
4166
(
2000
).
5.
T.
Onuma
,
S.
Saito
,
K.
Sasaki
,
T.
Masui
,
T.
Yamaguchi
,
T.
Honda
, and
M.
Higashiwaki
,
Jpn. J. Appl. Phys.
54
,
112601
(
2015
).
6.
P. H.
Carey
 IV
,
F.
Ren
,
D. C.
Hays
,
B. P.
Gila
,
S. J.
Pearton
,
S.
Jang
, and
A.
Kuramata
,
Vacuum
142
,
52
(
2017
).
7.
A.
Kuramata
,
K.
Koshi
,
S.
Watanabe
,
Y.
Yamaoka
,
T.
Masui
, and
S.
Yamakoshi
,
Jpn. J. Appl. Phys.
55
,
1202A2
(
2016
).
8.
E. H.
Nicollian
and
J. R.
Brews
,
MOS (Metal Oxide Semiconductor) Physics and Technology
(
Wiley
,
New York
,
1982
).
9.
T.
Kamimura
,
K.
Sasaki
,
M.
Hoi Wong
,
D.
Krishnamurthy
,
A.
Kuramata
,
T.
Masui
,
S.
Yamakoshi
, and
M.
Higashiwaki
,
Appl. Phys. Lett.
104
,
192104
(
2014
).
10.
E. O.
Filatova
and
A. S.
Konashuk
,
J. Phys. Chem. C
119
,
20755
(
2015
).
11.
A.
Hiraiwa
,
D.
Matsumura
, and
H.
Kawarada
,
J. Appl. Phys.
120
,
084504
(
2016
).
12.
A.
Hiraiwa
,
T.
Sasaki
,
S.
Okubo
,
K.
Horikawa
, and
H.
Kawarada
,
J. Appl. Phys.
123
,
155303
(
2018
).
13.
14.
R. L.
Puurunen
,
J. Appl. Phys.
97
,
121301
(
2005
).
15.
G.
Dingemans
,
B.
Jongbloed
,
W.
Knaepen
,
D.
Pierreux
,
L.
Jdira
, and
H.
Terhorst
,
ECS Trans.
64
,
35
(
2014
).
16.
M.
Higashiwaki
,
K.
Sasaki
,
T.
Kamimura
,
M. H.
Wong
,
D.
Krishnamurthy
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
,
Appl. Phys. Lett.
103
,
123511
(
2013
).
17.
H.
Zhou
,
S.
Alghmadi
,
M.
Si
,
G.
Qiu
, and
P. D.
Ye
,
IEEE Electron Dev. Lett.
37
,
1411
(
2016
).
18.
M. A.
Bhuiyan
,
H.
Zhou
,
R.
Jiang
,
E. X.
Zhang
,
D. M.
Fleetwood
,
P. D.
Ye
, and
T.-P.
Ma
,
IEEE Electron Dev. Lett.
39
,
1022
(
2018
).
19.
K. J.
Liddy
 et al.,
Appl. Phys. Express
12
,
126501
(
2019
).
20.
M.
Hirose
 et al.,
Microelectron. Eng.
216
,
111040
(
2019
).
21.
M.
Hirose
,
T.
Nabatame
,
Y.
Irokawa
,
E.
Maeda
,
A.
Ohi
,
N.
Ikeda
,
L.
Sang
,
Y.
Koide
, and
H.
Kiyono
,
J. Vac. Sci. Technol. A
39
,
012401
(
2021
).
22.
K.
Horikawa
,
S.
Okubo
,
H.
Kawarada
, and
A.
Hiraiwa
,
J. Vac. Sci. Technol. B
38
,
062207
(
2020
).
23.
O.
Beldarrain
,
M.
Duch
,
M.
Zabala
,
J. M.
Rafí
,
M. B.
González
, and
F.
Campabadal
,
J. Vac. Sci. Technol. A
31
,
01A128
(
2013
).
24.
A.
Hiraiwa (平岩 篤 )
,
T.
Saito (齊藤 達也 )
,
D.
Matsumura (松村 大輔 )
, and
H.
Kawarada (川原田 洋 )
,
J. Appl. Phys.
117
,
215304
(
2015
).
25.
A.
Hiraiwa (平岩 篤)
,
K.
Horikawa (堀川 清貴)
, and
H.
Kawarada (川原田 洋)
,
J. Appl. Phys.
127
,
065307
(
2020
).
26.
Power GaN Devices Materials, Applications and Reliability
, edited by
M.
Meneghini
,
G.
Meneghesso
, and
E.
Zanoni
(
Springer
,
Switzerland
,
2017
).
27.
H.
Murakami
 et al.,
Appl. Phys. Express
8
,
015503
(
2015
).
28.
29.
R. H.
Fowler
and
L.
Nordheim
,
Proc. R. Soc. Lond. A
119
,
173
(
1928
).
30.
31.
A.
Hiraiwa
,
T.
Saito
,
A.
Daicho
, and
H.
Kawarada
,
J. Appl. Phys.
114
,
134501
(
2013
).
32.
A.
Hiraiwa
,
D.
Matsumura
, and
H.
Kawarada
,
J. Appl. Phys.
119
,
064505
(
2016
).
33.
S.
Okubo
,
K.
Horikawa
,
H.
Kawarada
, and
A.
Hiraiwa
,
J. Appl. Phys.
126
,
045704
(
2019
).
34.
H. B.
Michaelson
,
J. Appl. Phys.
48
,
4729
(
1977
).
35.
M.
Mohamed
,
K.
Irmscher
,
C.
Janowitz
,
Z.
Galazka
,
R.
Manzke
, and
R.
Fornari
,
Appl. Phys. Lett.
101
,
132106
(
2012
).
36.
A.
Hiraiwa
,
K.
Horikawa
, and
H.
Kawarada
,
J. Appl. Phys.
129
,
195303
(
2021
).
37.
M.
Hattori
 et al.,
Jpn. J. Appl. Phys.
55
,
1202B6
(
2016
).
38.
V. G.
Hill
,
R.
Roy
, and
E. F.
Osborn
,
J. Am. Ceram. Soc.
35
,
135
(
1952
).
39.
H.
Peelaers
,
J. B.
Varley
,
J. S.
Speck
, and
C. G.
Van de Walle
,
Appl. Phys. Lett.
112
,
242101
(
2018
).
40.
L. M.
Terman
,
Solid-State Electron.
5
,
285
(
1962
).
42.
R.
Castagné
and
A.
Vapaille
,
Surf. Sci.
28
,
157
(
1971
).
43.
E. H.
Nicollian
and
A.
Goetzberger
,
Bell Syst. Tech. J.
46
,
1055
(
1967
).
44.
B. L.
Swenson
and
U. K.
Mishra
,
J. Appl. Phys.
106
,
064902
(
2009
).
45.
W.
Liu
,
I.
Sayed
,
C.
Gupta
,
H.
Li
,
S.
Keller
, and
U.
Mishra
,
Appl. Phys. Lett.
116
,
022104
(
2020
).
46.
A.
Hiraiwa
,
S.
Okubo
,
K.
Horikawa
, and
H.
Kawarada
,
J. Appl. Phys.
125
,
175704
(
2019
).
47.
T.
Kamimura
,
D.
Krishnamurthy
,
A.
Kuramata
,
S.
Yamakoshi
, and
M.
Higashiwaki
,
Jpn. J. Appl. Phys.
55
,
1202B5
(
2016
).
48.
Y.
Hori
,
C.
Mizue
, and
T.
Hashizume
,
Jpn. J. Appl. Phys.
49
,
080201
(
2010
).
49.
L
'.
Smrčok
,
V.
Langer
, and
J.
Křesťan
,
Acta Cryst. C
62
,
i83
(
2006
).
50.
H. O.
Ayoola
,
S. D.
House
,
C. S.
Bonifacio
,
K.
Kisslinger
,
W. A.
Saidi
, and
J. C.
Yang
,
Acta Mater.
182
,
257
(
2020
).
51.
I.
Levin
,
T.
Gemming
, and
D. G.
Brandon
,
Phys. Status Solidi A
166
,
197
(
1998
).
52.
B. C.
Lippens
and
J. H.
de Boer
,
Acta Cryst.
17
,
1312
(
1964
).
53.
Y.
Repelin
and
E.
Husson
,
Mater. Res. Bull.
25
,
611
(
1990
).
54.
S. V.
Tsybulya
and
G. N.
Kryukova
,
Powder Diffr.
18
,
309
(
2003
).
55.
L.
Kovarik
,
M.
Bowden
, and
J.
Szanyi
,
J. Catal.
393
,
357
(
2021
).
56.
B.
Ealet
,
M. H.
Elyakhloufi
,
E.
Gillet
, and
M.
Ricci
,
Thin Solid Films
250
,
92
(
1994
).
57.
J.
Åhman
,
G.
Svensson
, and
J.
Albertsson
,
Acta Cryst.
52
,
1336
(
1996
).
58.
S.
Geller
,
J. Chem. Phys.
33
,
676
(
1960
).
59.
J.
Narayan
and
B. C.
Larson
,
J. Appl. Phys.
93
,
278
(
2003
).
You do not currently have access to this content.