Experiments on field electron emission (FE) of single carbon nanotubes (CNTs) indicate that they exhibit a nearly linear Fowler–Nordheim plot, and the field enhancement factor (FEF) near the CNT apex is independent of the applied (macroscopic) field (FM) for small radii field emitters. Recent results, based on density functional theory calculations considering CNTs with small radii, retrieved the constancy of the FEF defined in terms of the corresponding induced electron density. As a consequence, it has been reported that the constancy of the FEF with FM could be connected with the linear response of the CNT. In this paper, we reinforce this connection, considering the problem of a floating (6,6) hybrid single-walled nanotube, whose cylindrical body is an insulating one and composed of alternating boron and nitrogen atoms end-capped with carbon atoms. Our results show that the constancy of the FEF is achieved when a linear dependence between the longitudinal component of the induced system dipole moment (μi,z) and FM is observed. Two regimes of constant polarizabilities have been found at sufficiently low and high FM-values. In the intermediate range 0.3V/nmFM5 V/nm, a crossover from insulating-to-conducting behavior, exhibiting a nonlinear dependence of μi,z on FM, is found accompanied by an increase of the FEF with FM. This result reveals circumstances that could lead to dependence of the FEF on FM, being timely for interpretation of FE characteristics in the context of vacuum nanoelectronic devices.

1.
Y.
Saito
,
Carbon Nanotube and Related Field Emitters
(
Wiley
,
Weinheim
,
2010
).
2.
M. T.
Cole
,
M.
Mann
,
K. B.
Teo
, and
W. I.
Milne
, in Emerging Nanotechnologies for Manufacturing, Micro and Nano Technologies, 2nd ed., edited by W. Ahmed and M. J. Jackson (William Andrew Publishing, Boston, 2015), pp. 125–186.
3.
P.
Vincent
et al.,
Phys. Rev. B
83
,
155446
(
2011
).
4.
A.
Pascale-Hamri
,
S.
Perisanu
,
A.
Derouet
,
C.
Journet
,
P.
Vincent
,
A.
Ayari
, and
S. T.
Purcell
,
Phys. Rev. Lett.
112
,
126805
(
2014
).
5.
M. T.
Cole
,
R. J.
Parmee
, and
W. I.
Milne
,
Nanotechnology
27
,
082501
(
2016
).
6.
N.
Perea-López
et al.,
ACS Nano
5
,
5072
(
2011
).
7.
C.
Edgcombe
,
S.
Masur
,
E.
Linscott
,
J.
Whaley-Baldwin
, and
C.
Barnes
,
Ultramicroscopy
198
,
26
(
2019
).
8.
S.
Masur
,
E.
Linscott
, and
C.
Edgcombe
,
J. Electron Spectrosc. Relat. Phenom.
241
,
146896
(
2020
).
9.
S. B.
Fairchild
et al.,
J. Appl. Phys.
129
,
125103
(
2021
).
10.
J. Y.
Huang
,
K.
Kempa
,
S. H.
Jo
,
S.
Chen
, and
Z. F.
Ren
,
Appl. Phys. Lett.
87
,
053110
(
2005
).
11.
P.
Zhang
,
J.
Park
,
S. B.
Fairchild
,
N. P.
Lockwood
,
Y. Y.
Lau
,
J.
Ferguson
, and
T.
Back
,
Appl. Sci.
8
,
1175
(
2018
).
12.
F. F.
Dall’Agnol
,
T. A.
de Assis
,
S. B.
Fairchild
,
J.
Ludwick
,
G.
Tripathi
, and
M.
Cahay
,
Appl. Phys. Lett.
117
,
253101
(
2020
).
13.
E. G.
Pogorelov
,
A. I.
Zhbanov
, and
Y.-C.
Chang
,
Ultramicroscopy
109
,
373
(
2009
).
14.
C. J.
Edgcombe
and
U.
Valdrè
,
Philos. Mag. B
82
,
987
(
2002
).
15.
C. J.
Edgcombe
,
Philos. Mag. B
82
,
1009
(
2002
).
16.
C.
Edgcombe
and
U.
Valdrè
,
Solid-State Electron.
45
,
857
(
2001
).
17.
R. G.
Forbes
,
C.
Edgcombe
, and
U.
Valdrè
,
Ultramicroscopy
95
,
57
(
2003
).
18.
E. G.
Pogorelov
,
Y.-C.
Chang
,
A. I.
Zhbanov
, and
Y.-G.
Lee
,
J. Appl. Phys.
108
,
044502
(
2010
).
19.
A.
Zhbanov
and
S.
Yang
,
Carbon
75
,
289
(
2014
).
20.
K.
Jensen
and
P.
Hawkes
, Electron Emission Physics, Advances in Imaging and Electron Physics (Academic, San Diego, CA, 2007).
21.
J. R.
Harris
,
K. L.
Jensen
,
J. J.
Petillo
,
S.
Maestas
,
W.
Tang
, and
D. A.
Shiffler
,
J. Appl. Phys.
121
,
203303
(
2017
).
22.
F. F.
Dall’Agnol
,
S. V.
Filippov
,
E. O.
Popov
,
A. G.
Kolosko
, and
T. A.
de Assis
,
J. Vac. Sci. Technol. B
39
,
032801
(
2021
).
23.
24.
B.
Lepetit
,
D.
Lemoine
, and
M.
Márquez-Mijares
,
J. Appl. Phys.
120
,
085105
(
2016
).
25.
M.
Wu
,
A.
Tafel
,
P.
Hommelhoff
, and
E.
Spiecker
,
Appl. Phys. Lett.
114
,
013101
(
2019
).
26.
B.
Lepetit
,
J. Appl. Phys.
125
,
025107
(
2019
).
27.
H.
Toijala
,
K.
Eimre
,
A.
Kyritsakis
,
V.
Zadin
, and
F.
Djurabekova
,
Phys. Rev. B
100
,
165421
(
2019
).
28.
A.
Buldum
and
J. P.
Lu
,
Phys. Rev. Lett.
91
,
236801
(
2003
).
29.
X.
Zheng
,
G.
Chen
,
Z.
Li
,
S.
Deng
, and
N.
Xu
,
Phys. Rev. Lett.
92
,
106803
(
2004
).
30.
J.
Peng
,
Z.
Li
,
C.
He
,
S.
Deng
,
N.
Xu
,
X.
Zheng
, and
G.
Chen
,
Phys. Rev. B
72
,
235106
(
2005
).
31.
J.
Peng
et al.,
J. Appl. Phys.
104
,
014310
(
2008
).
32.
K. A.
Dean
and
B. R.
Chalamala
,
Appl. Phys. Lett.
76
,
375
(
2000
).
33.
J.-M.
Bonard
,
K. A.
Dean
,
B. F.
Coll
, and
C.
Klinke
,
Phys. Rev. Lett.
89
,
197602
(
2002
).
34.
R. G.
Forbes
,
Proc. R. Soc. London, Ser. A
469
,
20130271
(
2013
).
35.
C. P.
de Castro
,
T. A.
de Assis
,
R.
Rivelino
,
F.
de B. Mota
,
C. M. C.
de Castilho
, and
R. G.
Forbes
,
J. Phys. Chem. C
123
,
5144
(
2019
).
36.
C. P.
de Castro
,
T. A.
de Assis
,
R.
Rivelino
,
F. D. B.
Mota
,
C. M. C.
de Castilho
, and
R. G.
Forbes
,
J. Appl. Phys.
126
,
204302
(
2019
).
37.
C. P.
de Castro
,
T. A.
de Assis
,
R.
Rivelino
,
F. D. B.
Mota
,
C. M. C.
de Castilho
, and
R. G.
Forbes
,
J. Chem. Inf. Model.
60
,
714
(
2019
).
38.
R.
Parr
and
W.
Yang
, Density-Functional Theory of Atoms and Molecules, International Series of Monographs on Chemistry (Oxford University Press, New York, 1994).
39.
J. R.
Harris
,
K. L.
Jensen
, and
D. A.
Shiffler
,
J. Phys. D: Appl. Phys.
48
,
385203
(
2015
).
40.
K. L.
Jensen
,
J. Appl. Phys.
107
,
014905
(
2010
).
41.
E. O.
Popov
,
A. G.
Kolosko
, and
S. V.
Filippov
,
AIP Adv.
9
,
015129
(
2019
).
42.
To solve the Kohn–Sham equations, we adopt the Perdew-Burke-Ernzerhof (PBE) exchange-correlation potential. Core electrons were described in terms of norm-conserving pseudopotentials and valence electrons with double-ζ basis sets, including polarization functions, using an energy cutoff of 300 Ry and sampling the Γ point of the Brillouin-zone.
43.
J. M.
Soler
,
E.
Artacho
,
J. D.
Gale
,
A.
García
,
J.
Junquera
,
P.
Ordejón
, and
D.
Sánchez-Portal
,
J. Phys.: Condens. Matter
14
,
2745
(
2002
).
You do not currently have access to this content.