We report on a new approach to transport samples for surface analysis safely from oxidation over long distances. The transport method is based on silane-doped inert gases, which are used as a transport medium. In this paper, we show that with the help of silane, highly purified inert gas atmospheres with oxygen contents of less than 10−15 mbar can be generated. In addition, we demonstrate that compared to commercially available inert gases, silane-doped inert gas atmospheres can be efficiently used to store and transport samples safely from oxidation. For this, surface sensitive measurements on highly reactive titanium samples, which passed the different stages of samples transport, were performed. The measurements revealed that no pronounced oxidation by the silane-doped atmosphere takes place. However, adsorption of silicon oxide from the atmosphere was observed.

1.
F.
Schaper
,
B.
Denkena
,
M.-A.
Dittrich
,
A.
Krödel
,
J.
Matthies
, and
S.
Worpenberg
, in
Production at the Leading Edge of Technology
, edited by
B. A.
Behrens
,
A.
Brosius
,
W.
Hintze
,
S.
Ihlenfeldt
, and
J. P.
Wulsberg
(
Springer
,
Berlin
,
2021
), pp.
275
283
.
2.
N.
Emminghaus
,
C.
Hoff
,
J.
Hermsdorf
, and
S.
Kaierle
,
Addit. Manuf.
46
,
102093
(
2021
).
3.
R. E.
Clausing
,
L.
Heatherly
, and
L. C.
Emerson
,
J. Vac. Sci. Technol.
16
,
708
(
1979
).
4.
P.
Jiříček
,
M.
Cukr
,
V.
Kolařı´k
, and
S.
Koc
,
Rev. Sci. Instrum.
69
,
2804
(
1998
).
5.
G.
Firpo
,
F. Buatier
de Mongeot
,
C.
Boragno
, and
U.
Valbusa
,
Rev. Sci. Instrum.
76
,
026108
(
2005
).
6.
F. U.
Renner
,
Y.
Gründer
, and
J.
Zegenhagen
,
Rev. Sci. Instrum.
78
,
033903
(
2007
).
7.
A.
Syed Mohd
,
S.
Pütter
,
S.
Mattauch
,
A.
Koutsioubas
,
H.
Schneider
,
A.
Weber
, and
T.
Brückel
,
Rev. Sci. Instrum.
87
,
123909
(
2016
).
8.
Y.
Watanabe
,
Y. F.
Nishimura
,
R.
Suzuki
,
H.
Uehara
,
T.
Nimura
,
A.
Beniya
,
N.
Isomura
,
K.
Asakura
, and
S.
Takakusagi
,
J. Vac. Sci. Technol. A
34
,
023201
(
2016
).
9.
R.
Cheng
 et al,
J. Catal.
273
,
103
(
2010
).
10.
S.
Regenspurg
,
D.
Schild
,
T.
Schäfer
,
F.
Huber
, and
M. E.
Malmström
,
Appl. Geochem.
24
,
1617
(
2009
).
11.
F. B.
Noronha
,
E. C.
Fendley
,
R. R.
Soares
,
W. E.
Alvarez
, and
D. E.
Resasco
,
Chem. Eng. J.
82
,
21
(
2001
).
12.
K.
Hasebe
,
H.
Mori
, and
M.
Terano
,
J. Mol. Catal. A
124
,
L1
(
1997
).
13.
M.
Wutz
,
Handbuch Vakuumtechnik: Theorie und Praxis
(
Vieweg
,
Braunschweig
,
2000
).
14.
U.
Vogel
,
E.
Brachmann
,
S.
Oswald
,
S.
Menzel
,
T.
Gemming
, and
J.
Eckert
,
Vacuum
117
,
81
(
2015
).
15.
U.
Holländer
,
D.
Wulff
,
A.
Langohr
,
K.
Möhwald
, and
H. J.
Maier
,
Int. J. Pr. Eng. Man-GT.
7
,
1071
(
2020
).
16.
M. C.
Biesinger
,
L. W. M.
Lau
,
A. R.
Gerson
, and
R. S. C.
Smart
,
Appl. Surf. Sci.
257
,
887
(
2010
).
17.
H. E.
Bishop
,
J. C.
Rivière
, and
J. P.
Coad
,
Surf. Sci.
24
,
1
(
1971
).
18.
M. V.
Kuznetsov
,
J. F.
Zhuravlev
, and
V. A.
Gubanov
,
J. Electron Spectrosc.
58
,
169
(
1992
).
19.
R.
Larciprete
,
A.
Danailov
,
A.
Barinov
,
L.
Casalis
,
L.
Gregoratti
, and
M.
Kiskinova
,
Appl. Phys. Lett.
79
,
191
(
2001
).
20.
Y.
Fukuda
,
F.
Honda
, and
J. W.
Rabalais
,
Surf. Sci.
91
,
165
(
1980
).
21.
T. P.
Nguyen
and
S.
Lefrant
,
J. Phys.: Condens. Matter
1
,
5197
(
1989
).
22.
See supplementary material at https://www.scitation.org/doi/suppl/10.1116/6.0001180 for the measurement of the oxygen content in pure argon 5.0.

Supplementary Material

You do not currently have access to this content.