Detection of the SARS-CoV-2 spike protein and inactivated virus was achieved using disposable and biofunctionalized functional strips, which can be connected externally to a reusable printed circuit board for signal amplification with an embedded metal–oxide–semiconductor field-effect transistor (MOSFET). A series of chemical reactions was performed to immobilize both a monoclonal antibody and a polyclonal antibody onto the Au-plated electrode used as the sensing surface. An important step in the biofunctionalization, namely, the formation of Au-plated clusters on the sensor strips, was verified by scanning electron microscopy, as well as electrical measurements, to confirm successful binding of thiol groups on this Au surface. The functionalized sensor was externally connected to the gate electrode of the MOSFET, and synchronous pulses were applied to both the sensing strip and the drain contact of the MOSFET. The resulting changes in the dynamics of drain waveforms were converted into analog voltages and digital readouts, which correlate with the concentration of proteins and virus present in the tested solution. A broad range of protein concentrations from 1 fg/ml to 10 μg/ml and virus concentrations from 100 to 2500 PFU/ml were detectable for the sensor functionalized with both antibodies. The results show the potential of this approach for the development of a portable, low-cost, and disposable cartridge sensor system for point-of-care detection of viral diseases.

1.
M.
Lotfi
,
M. R.
Hamblin
, and
N.
Rezaei
,
Clin. Chim. Acta
508
,
254
(
2020
).
2.
World Health Organization
, WHO Coronavirus (COVID-19) Dashboard, 2021.
3.
B.
Udugama
 et al.,
ACS Nano
14
,
3822
(
2020
).
5.
A.
La Marca
,
M.
Capuzzo
,
T.
Paglia
,
L.
Roli
,
T.
Trenti
, and
S. M.
Nelson
,
Reprod. BioMed. Online
41
,
483
(
2020
).
6.
Y. W.
Tang
,
J. E.
Schmitz
,
D. H.
Persing
, and
C. W.
Stratton
,
J. Clin. Microbiol.
58
,
e00512
(
2020
).
9.
P.
Ranjan
,
A.
Singhal
,
S.
Yadav
,
N.
Kumar
,
S.
Murali
,
S. K.
Sanghi
, and
R.
Khan
,
Int. Rev. Immunol.
40
,
126
(
2021
).
10.
M.
Xian
,
P. H.
Carey
,
C.
Fares
,
F.
Ren
,
S. S.
Shan
,
Y.
Te Liao
,
J. F.
Esquivel-Upshaw
, and
S. J.
Pearton
,
IEEE Research and Applications of Photonics in Defense Conference, RAPID 2020—Proceedings
, virtual conference, 10–12 August 2020 (
IEEE
,
New York
,
2020
).
11.
J.
Zhao
 et al.,
Clin. Infect. Dis.
71
,
2027
(
2020
).
12.
M. Z.
Rashed
,
J. A.
Kopechek
,
M. C.
Priddy
,
K. T.
Hamorsky
,
K. E.
Palmer
,
N.
Mittal
,
J.
Valdez
,
J.
Flynn
, and
S. J.
Williams
,
Biosens. Bioelectron.
171
,
112709
(
2021
).
13.
R.
Sabino-Silva
,
A. C. G.
Jardim
, and
W. L.
Siqueira
,
Clin. Oral Invest.
24
,
1619
(
2020
).
14.
A. L.
Wyllie
 et al.,
N. Engl. J. Med.
383
,
1283
(
2020
).
15.
E.
Williams
,
K.
Bond
,
B.
Zhang
,
M.
Putland
, and
D. A.
Williamson
,
J. Clin. Microbiol.
58
,
e00776
(
2020
).
16.
J.
Xu
,
Y.
Li
,
F.
Gan
,
Y.
Du
, and
Y.
Yao
,
J. Dent. Res.
99
,
989
(
2020
).
17.
Y.
Li
,
B.
Ren
,
X.
Peng
,
T.
Hu
,
J.
Li
,
T.
Gong
,
B.
Tang
,
X.
Xu
, and
X.
Zhou
,
Mol. Oral Microbiol.
35
,
141
(
2020
).
18.
D.
Sapkota
 et al.,
J. Clin. Pathol.
0
,
206834
(
2020
).
19.
P.
Han
and
S.
Ivanovski
,
Diagnostics
10
,
290
(
2020
).
20.
E.
Pasomsub
,
S. P.
Watcharananan
,
K.
Boonyawat
,
P.
Janchompoo
,
G.
Wongtabtim
,
W.
Suksuwan
,
S.
Sungkanuparph
, and
A.
Phuphuakrat
,
Clin. Microbiol. Infect.
27
,
285.e1
(
2021
).
21.
M.
Alafeef
,
K.
Dighe
,
P.
Moitra
, and
D.
Pan
,
ACS Nano
14
,
17028
(
2020
).
22.
B. S.
Kang
 et al.,
Appl. Phys. Lett.
89
,
122102
(
2006
).
23.
B. S.
Kang
,
F.
Ren
,
M. C.
Kang
,
C.
Lofton
,
W.
Tan
,
S. J.
Pearton
,
A.
Dabiran
,
A.
Osinsky
, and
P. P.
Chow
,
Appl. Phys. Lett.
86
,
112105
(
2005
).
24.
T. J.
Anderson
,
K. D.
Hobart
,
M. J.
Tadjer
,
A. D.
Koehler
,
T. I.
Feygelson
,
B. B.
Pate
,
J. K.
Hite
,
F. J.
Kub
, and
C. R.
Eddy
,
ECS Trans.
64
,
185
(
2014
).
25.
R.
Mehandru
,
B.
Luo
,
B. S.
Kang
,
J.
Kim
,
F.
Ren
,
S. J.
Pearton
,
C. C.
Pan
,
G. T.
Chen
, and
J. I.
Chyi
,
Solid-State Electron.
48
,
351
(
2004
).
26.
B. S.
Kang
,
F.
Ren
,
B. P.
Gila
,
C. R.
Abernathy
, and
S. J.
Pearton
,
Appl. Phys. Lett.
84
,
1123
(
2004
).
27.
P. H.
Carey
 et al.,
J. Electrochem. Soc.
167
,
037507
(
2020
).
28.
J.
Yang
,
P.
Carey
,
F.
Ren
,
M. A.
Mastro
,
K.
Beers
,
S. J.
Pearton
, and
I. I.
Kravchenko
,
Appl. Phys. Lett.
113
,
032101
(
2018
).
29.
J.
Yang
,
P.
Carey
,
F.
Ren
,
Y. L.
Wang
,
M. L.
Good
,
S.
Jang
,
M. A.
Mastro
, and
S. J.
Pearton
,
Appl. Phys. Lett.
111
,
202104
(
2017
).
30.
S.-S.
Shan
 et al.,
IEEE Trans. Biomed. Circuits Syst.
14
,
1362
(
2020
).
31.
S. Y.
Lu
,
S. S.
Shan
,
J.
Yang
,
C. W.
Chang
,
F.
Ren
,
J.
Lin
,
S.
Pearton
, and
Y.
Te Liao
,
Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society EMBS
, Berlin, Germany, 23–27 July 2019 (
IEEE
,
New York
,
2019
), pp.
5761
5764
.
32.
Y.
Xue
,
X.
Li
,
H.
Li
, and
W.
Zhang
,
Nat. Commun.
5
,
5357
(
2014
).
33.
X.
Wu
,
W.
Tang
,
C.
Hou
,
C.
Zhang
, and
N.
Zhu
,
Microchim. Acta
181
,
991
(
2014
).
34.
J.
Chen
,
A. F.
Zheng
,
A. H.
Chen
,
Y.
Gao
,
C.
He
,
X.
Kai
,
G.
Wu
, and
Y.
Chen
,
Anal. Chim. Acta
599
,
134
(
2007
).
35.
N. S.
Lipman
,
L. R.
Jackson
,
L. J.
Trudel
, and
F.
Weis-Garcia
,
ILAR J.
46
,
258
(
2005
).
36.
B.
Byrne
,
E.
Stack
,
N.
Gilmartin
, and
R.
O’Kennedy
,
Sensors
9
,
4407
(
2009
).
37.
P.
Nina
,
S.
Mark
,
T. T.
Anh-Hue
,
L.
Philip
, and
B. M.
Forster
,
Microbiology
(
OpenStax
, Houston, TX,
2016
).
38.
A.
Kapoor
,
J. A.
Ritter
, and
R. T.
Yang
,
Langmuir
6
,
660
(
1990
).
39.
P. H.
Carey
,
J.
Yang
,
F.
Ren
,
C.-W.
Chang
,
J.
Lin
,
S. J.
Pearton
,
B.
Lobo
, and
M. E.
Leon
,
J. Electrochem. Soc.
166
,
B708
(
2019
).
You do not currently have access to this content.