This paper investigates the physical process of polymer nanostructure deposition from a heated atomic force microscope (AFM) tip and focuses on the role of capillary-driven flow on deposited feature sizes during thermal dip-pen nanolithography. We used a heated AFM tip to deposit 50–350 nm wide poly(methyl methacrylate) nanoribbons by varying tip temperature, tip speed, and polymer molecular weight. For polymers of different molecular weights, the width of the deposited polymer nanoribbons decreases with capillary number (Ca), independent of tip temperature, tip speed, and polymer molecular weight. These results indicate that the capillary-driven flow governs polymer nanostructure deposition from a heated tip. For high molecular weight polymers deposited with feature size close to the polymer radius of gyration Rg, the molecular weight also influences the size of the deposited polymer ribbon. Using scaling arguments, we show that the feature size can be predicted by Ca and Rg. Uniform and continuous deposition occurs only when Ca << 1, confirming that the polymer flow is driven by the capillary force. The results of this study enable better control of speed and resolution at which polymer nanostructures can be fabricated using AFM.

1.
J.
Bai
,
X.
Zhong
,
S.
Jiang
,
Y.
Huang
, and
X.
Duan
,
Nat. Nanotechnol.
5
,
190
(
2010
).
2.
Z.
Hu
,
M.
Tian
,
B.
Nysten
, and
A. M.
Jonas
,
Nat. Mater.
8
,
62
(
2009
).
4.
L.
Xia
,
Z.
Wei
, and
M.
Wan
,
J. Colloid Interface Sci.
341
,
1
(
2010
).
5.
J.
Chai
,
F.
Huo
,
Z.
Zheng
,
L. R.
Giam
,
W.
Shim
, and
C. A.
Mirkin
,
Proc. Natl. Acad. Sci. U.S.A.
107
,
20202
(
2010
).
6.
R.
McKendry
,
W. T. S.
Huck
,
B.
Weeks
,
M.
Fiorini
,
C.
Abell
, and
T.
Rayment
,
Nano Lett.
2
,
713
(
2002
).
7.
L. M.
Demers
,
D. S.
Ginger
,
S. J.
Park
,
Z.
Li
,
S. W.
Chung
, and
C. A.
Mirkin
,
Science
296
,
1836
(
2002
).
8.
S.-W.
Chung
,
D. S.
Ginger
,
M. W.
Morales
,
Z.
Zhang
,
V.
Chandrasekhar
,
M. A.
Ratner
, and
C. A.
Mirkin
,
Small
1
,
64
(
2005
).
9.
J.-H.
Lim
,
D. S.
Ginger
,
K.-B.
Lee
,
J.
Heo
,
J.-M.
Nam
, and
C. A.
Mirkin
,
Angew. Chem. Int. Ed.
42
,
2309
(
2003
).
10.
K. B.
Lee
,
J. H.
Lim
, and
C. A.
Mirkin
,
J. Am. Chem. Soc.
125
,
5588
(
2003
).
11.
S.
Hong
,
J.
Zhu
, and
C. A.
Mirkin
,
Science
286
,
523
(
1999
).
12.
Y.
Zhang
,
K.
Salaita
,
J. H.
Lim
, and
C. A.
Mirkin
,
Nano Lett.
2
,
1389
(
2002
).
13.
T.
Auletta
 et al,
Angew. Chem. Int. Ed.
43
,
369
(
2004
).
14.
V.
Navikas
,
M.
Gavutis
,
T.
Rakickas
, and
R. N.
Valiokas
,
ACS Appl. Mater. Interfaces
11
,
28449
(
2019
).
15.
R. D.
Piner
,
J.
Zhu
,
F.
Xu
,
S.
Hong
, and
C. A.
Mirkin
,
Science
283
,
661
(
1999
).
16.
Y.-S.
Shin
,
J. Y.
Son
,
M.-H.
Jo
,
Y.-H.
Shin
, and
H. M.
Jang
,
J. Am. Chem. Soc.
133
,
5623
(
2011
).
17.
P.
Rath
,
M.
Hirtz
,
G.
Lewes-Malandrakis
,
D.
Brink
,
C.
Nebel
, and
W. H. P.
Pernice
,
Adv. Opt. Mater.
3
,
328
(
2015
).
18.
F.
Dawood
 et al,
Small
14
,
1801503
(
2018
).
19.
M.
Su
,
S.
Li
, and
V. P.
Dravid
,
J. Am. Chem. Soc.
125
,
9930
(
2003
).
20.
Q.
Tang
and
S.-Q.
Shi
,
Sens. Actuators B Chem.
131
,
379
(
2008
).
21.
A.
Martínez-Otero
,
P.
González-Monje
,
D.
Maspoch
,
J.
Hernando
, and
D.
Ruiz-Molina
,
Chem. Commun.
47
,
6864
(
2011
).
22.
K. B.
Lee
,
E. Y.
Kim
,
C. A.
Mirkin
, and
S. M.
Wolinsky
,
Nano Lett.
4
,
1869
(
2004
).
24.
K.
Mitsakakis
,
S.
Sekula-Neuner
,
S.
Lenhert
,
H.
Fuchs
, and
E.
Gizeli
,
Analyst
137
,
3076
(
2012
).
25.
M.
Hirtz
,
J.
Brglez
,
H.
Fuchs
, and
C. M.
Niemeyer
,
Small
11
,
5752
(
2015
).
26.
P. E.
Sheehan
,
L. J.
Whitman
,
W. P.
King
, and
B. A.
Nelson
,
Appl. Phys. Lett.
85
,
1589
(
2004
).
27.
S.
Somnath
, and
W. P.
King
,
Sens. Actuators A Phys.
192
,
27
(
2013
).
28.
H.
Hu
,
S.
Banerjee
,
D.
Estrada
,
R.
Bashir
, and
W. P.
King
,
RSC Adv.
5
,
37006
(
2015
).
29.
M.
Yang
,
P. E.
Sheehan
,
W. P.
King
, and
L. J.
Whitman
,
J. Am. Chem. Soc.
128
,
6774
(
2006
).
30.
R.
Szoszkiewicz
,
T.
Okada
,
S. C.
Jones
,
T.
De Li
,
W. P.
King
,
S. R.
Marder
, and
E.
Riedo
,
Nano Lett.
7
,
1064
(
2007
).
31.
W.-K.
Lee
,
J. T.
Robinson
,
D.
Gunlycke
,
R. R.
Stine
,
C. R.
Tamanaha
,
W. P.
King
, and
P. E.
Sheehan
,
Nano Lett.
11
,
5461
(
2011
).
32.
S.
Chen
,
S.
Kim
,
W.
Chen
,
J.
Yuan
,
R.
Bashir
,
J.
Lou
,
A. M.
van der Zande
, and
W. P.
King
,
Nano Lett.
19
,
2092
(
2019
).
33.
J. R.
Felts
,
S.
Somnath
,
R. H.
Ewoldt
, and
W. P.
King
,
Nanotechnology
23
,
215301
(
2012
).
34.
G.
Liu
,
Y.
Zhou
,
R. S.
Banga
,
R.
Boya
,
K. A.
Brown
,
A. J.
Chipre
,
S. B. T.
Nguyen
, and
C. A.
Mirkin
,
Chem. Sci.
4
,
2093
(
2013
).
35.
D. J.
Eichelsdoerfer
,
K. A.
Brown
, and
C. A.
Mirkin
,
Soft Matter
10
,
5603
(
2014
).
36.
P. C.
Fletcher
 et al,
ACS Nano
4
,
3338
(
2010
).
37.
B. A.
Nelson
and
W. P.
King
,
Sens. Actuators A Phys.
140
,
51
(
2007
).
38.
J.
Lee
,
T.
Beechem
,
T. L.
Wright
,
B. A.
Nelson
,
S.
Graham
, and
W. P.
King
,
J. Microelectromechanical Syst.
15
,
1644
(
2006
).
39.
S.
Somnath
,
E. A.
Corbin
, and
W. P.
King
,
IEEE Sens. J.
11
,
2664
(
2011
).
40.
B. A.
Nelson
and
W. P.
King
,
Nanosc. Microsc. Thermophys. Eng.
12
,
98
(
2008
).
41.
K.
Fuchs
,
C.
Friedrich
, and
J.
Weese
,
Macromolecules
9297
,
5893
(
1996
).
42.
H.
Hu
,
P. K.
Mohseni
,
L.
Pan
,
X.
Li
,
S.
Somnath
,
J. R.
Felts
,
M. A.
Shannon
, and
W. P.
King
,
J. Vac. Sci. Technol. B
31
,
06FJ01
(
2013
).
43.
D. W.
Van Krevelen
and
K.
Te Nijenhuis
,
Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction From Additive Group Contributions
(
Elsevier
, Amsterdam,
2009
).
44.
N.
Farmakidis
and
K. A.
Brown
,
Langmuir
33
,
5173
(
2017
).
45.
M.
Soleymaniha
and
J. R.
Felts
,
Int. J. Heat Mass Transf.
101
,
166
(
2016
).
46.
S.
Wu
,
J. Colloid Interface Sci.
31
,
153
(
1969
).
47.
J. E.
Mark
,
Physical Properties of Polymers Handbook
(Springer, New York,
2007
).
48.
R. N.
Li
,
F.
Chen
,
C. H.
Lam
, and
O. K. C.
Tsui
,
Macromolecules
46
,
7889
(
2013
).
49.
J. L.
Keddie
,
R. A. L.
Jones
, and
R. A.
Cory
,
Faraday Discuss.
98
,
219
(
1994
).
50.
H. D.
Rowland
,
W. P.
King
,
J. B.
Pethica
, and
G. L. W.
Cross
,
Science
322
,
720
(
2008
).
51.
C. L.
Soles
and
Y.
Ding
,
Science
322
,
689
(
2008
).
52.
R.
Jones
,
S.
Kumar
,
D.
Ho
,
R.
Briber
, and
T.
Russell
,
Nature
400
,
146
(
1999
).
53.
P. G.
De Gennes
,
Rev. Mod. Phys.
57
,
827
(
1985
).
54.
J. H.
Snoeijer
and
B.
Andreotti
,
Annu. Rev. Fluid Mech.
45
,
269
(
2013
).
55.
M.
Soleymaniha
and
J. R.
Felts
,
Rev. Sci. Instrum.
89
,
033703
(
2018
).
56.
J. H.
Lienhard
,
A Heat Transfer Textbook
(
Courier Corporation
, North Chelmsford,
2011
).
57.
P. H.
Hadland
,
R.
Balasubramaniam
,
G.
Wozniak
, and
R. S.
Subramanian
,
Exp. Fluids
26
,
240
(
1999
).
58.
C. D.
O’Connell
,
M. J.
Higgins
,
R. P.
Sullivan
,
S. E.
Moulton
, and
G. G.
Wallace
,
Small
10
,
3717
(
2014
).
59.
J. H.
Pikul
,
P.
Graf
,
S.
Mishra
,
K.
Barton
,
Y. K.
Kim
,
J. A.
Rogers
,
A.
Alleyne
,
P. M.
Ferreira
, and
W. P.
King
,
IEEE Sens. J.
11
,
2246
(
2011
).
You do not currently have access to this content.