We observed the polarity-dependent thermionic emission (TE) and conversion characteristics of n-type GaN-based cathodes with Cs adsorbed on their surfaces. TE current from the surface of an n-GaN sample with N-polarity was 0.18 mA at an applied anode voltage of 30 V at 500 °C. This TE current was markedly higher than that of a sample with Ga-polarity, which had a corresponding TE current of 0.063 mA. We consider the N-polarity with spontaneous polarization to be the cause of the increase in electron density at the Cs/n-GaN interface. TE current was also detected from both samples with Ga- and N-polarity even when the applied anode voltage was 0 V or lower, indicating the presence of thermionic conversion characteristics. From the viewpoint of a thermionic converter, the electromotive force for TE was 0.12 V higher when using the N-polarity n-GaN cathode compared with the Ga-polarity cathode. The short-circuit currents at 500 °C were 4.8 and 0.97 μA for the sample with N-polarity and the one with Ga-polarity, respectively.

1.
David B.
Go
,
J. R.
Haase
,
J.
George
,
J.
Mannhart
,
R.
Wanke
,
A.
Nojeh
, and
R.
Nemanich
,
J. Front. Mech. Eng.
3
,
13
(
2017
).
2.
K. A. A.
Khalid
,
T. J.
Leong
, and
K.
Mohamed
,
IEEE Trans. Electron Devices
63
,
2231
(
2016
).
3.
H. J.
Goldsmid
,
Introduction to Thermoelectricity Second Edition
(
Springer
,
Heidelberg
,
2016
), p.
257
.
4.
T.
Sun
,
F. A. M.
Koeck
,
C.
Zhu
, and
R. J.
Nemanich
,
Appl. Phys. Lett.
98
,
202101
(
2011
).
5.
C. I.
Wu
and
A.
Kahn
,
Appl. Surf. Sci.
162–163
,
250
(
2000
).
6.
H.
Kato
,
D.
Takeuchi
,
M.
Ogura
,
T.
Yamada
,
M.
Kataoka
,
Y.
Kimura
,
S.
Sobue
,
C. E.
Nebel
, and
S.
Yamasaki
,
Diamond Relat. Mater.
64
,
165
(
2016
).
7.
M. C.
James
,
F.
Fogarty
,
R.
Zulkharnay
,
N. A.
Fox
, and
P. W.
May
,
Carbon
171
,
532
(
2021
).
8.
S.
Kimura
,
H.
Yoshida
,
S.
Uchida
, and
A.
Ogino
,
Phys. Status Solidi A
217
,
1900719
(
2020
).
9.
S.
Kimura
,
H.
Yoshida
,
S.
Uchida
, and
A.
Ogino
,
Jpn. J. Appl. Phys.
59
,
SGGF01
(
2020
).
10.
J.
Marini
,
I.
Mahaboob
,
E.
Rocco
,
L. D.
Bell
, and
F. S.
Sandvik
,
J. Appl. Phys.
124
,
113101
(
2018
).
11.
S.
Kimura
,
H.
Yoshida
,
H.
Miyazaki
,
T.
Ito
, and
A.
Ogino
,
2020 33rd International Vacuum Nanoelectronics Conference (IVNC)
, Lyon, France, 6–10 July 2020 (IEEE, Piscataway, NJ, 2020), pp. 1–2.
12.
H.
Morkoç
,
Nitride Semiconductors and Devices
(
Springer
,
Heidelberg
,
1999
).
13.
D.
Huang
 et al,
J. Vac. Sci. Technol. B
20
,
2256
(
2003
).
14.
M.
Foussekis
,
J. D.
Ferguson
,
J. D.
McNamara
,
A. A.
Baski
, and
M. A.
Reshchikov
,
J. Vac. Sci. Technol. B
30
,
051210
(
2012
).
15.
D. K.
Schroder
,
Semiconductor Material and Device Characterization
, 3rd ed. (
Wiley
, New York,
2006
).
16.
Y.
Tang
, “
Electron emission spectroscopy characterization of N-doped diamond and Si-doped AlGaN
,”
Ph.D. thesis
(
North Carolina State University
,
2007
), https://repository.lib.ncsu.edu/bitstream/handle/1840.16/5948/etd.pdf?sequence=1&isAllowed=y.
17.
Z.
Liu
,
L.
Chen
,
S.
Zhang
,
S.
Zhu
,
Q.
Meng
,
Y.
Qian
,
H.
Jani
, and
L.
Duan
,
J. Nanophoton
13
,
016011
(
2019
).
18.
F.
Ichihashi
,
X.
Dong
,
A.
Inoue
,
T.
Kawaguchi
,
M.
Kuwahara
,
T.
Ito
,
S.
Harada
,
M.
Tagawa
, and
T.
Ujihara
,
Rev. Sci. Instrum.
89
,
073103
(
2018
).
19.
P.
Stark
,
P.
Kempisty
,
K.
Sakowski
, and
S.
Krukowski
,
J. Vac. Sci. Technol. A
35
,
021406
(
2017
).
20.
G. V.
Benemanskaya
,
V. S.
Vikhnin
,
N. M.
Shmidt
,
G. E.
Frank-Kamenetskaya
, and
I. V.
Afanasiev
,
Appl. Phys. Lett.
85
,
1365
(
2004
).
You do not currently have access to this content.