Silicon field emitter arrays (FEAs) with different tip sizes and quantities were fabricated by saw dicing and anisotropic wet chemical etching by tetramethylammonium hydroxide. The tip is formed by the different etching rates of the crystal facets leading to a sharp pyramid based on {103} planes on the top and a hexadecagon based on {331} and {221} planes on the bottom. Electrical measurements at 10−5 mbar up to 10 μA show good reproducibility for FEAs with the same process parameters and higher uniformity and stability with an increasing number of tips. Constant current measurements at the same conditions and 10 μA show a mean electric field increase of about 0.06(3) V/(μm h) for p-type FEAs with a tip quantity of 3600. The shift increases with lower tip quantity and is higher for n-type FEAs compared to p-type. The degradation during the constant current measurement of n-type samples is found to be partly reversible by heating to 200 °C during emission. In contrast, heating of p-type FEAs induced further degradation instead of a regeneration effect.

1.
S.
Cheng
,
F. A.
Hill
,
E. V.
Heubel
, and
L. F.
Velasquez-Garcia
,
J. Microelectromech. Syst.
24
(
2
),
373
383
(
2015
).
2.
A.
Basu
,
M. E.
Swanwick
,
A. A.
Fomani
, and
L. F.
Velásquez-García
,
J. Phys. D. Appl. Phys.
48
,
225501
(
2015
).
3.
M.
Bachmann
 et al,
J. Vac. Sci. Technol. B
38
,
023203
(
2020
).
4.
E.
Bunert
,
A.
Heptner
,
T.
Reinecke
,
A. T.
Kirk
, and
S.
Zimmermann
,
Rev. Sci. Instrum.
88
,
024102
(
2017
).
5.
C.
Wendt
 et al,
14 Dresdner Sensor-Symposium 2019
,
Dresden, Germany, 2-4 December 2019
(AMA Verband für Sensorik und Messtechnik e.V., 2019), ISBN: 978-3-9819376-1-9.
6.
F. A.
Baker
and
T. A.
Giorgi
,
Br. J. Appl. Phys.
11
,
433
(
1960
).
7.
C.
Langer
 et al,
J. Vac. Sci. Technol. B
34
,
02G107
(
2016
).
8.
C.
Langer
,
R.
Lawrowski
,
C.
Prommesberger
,
F.
Dams
,
P.
Serbun
,
M.
Bachmann
,
G.
Muller
, and
R.
Schreiner
, 2014 27th International Vacuum Nanoelectronics Conference, Engelberg, Switzerland, 6–10 July 2014 (
IEEE
,
New York
,
2014
), pp.
222
223
.
9.
C.
Langer
,
V.
Bomke
,
M.
Hausladen
,
R.
Ławrowski
,
C.
Prommesberger
,
M.
Bachmann
, and
R.
Schreiner
,
J. Vac. Sci. Technol. B
38
,
013202
(
2020
).
10.
A.
Kusch
,
M.
Wurz
,
E.
Bunert
, and
S.
Zimmermann
, 2017 30th International Vacuum Nanoelectronics Conference (IVNC 2017), Regensburg, Germany, 10–14 July 2017 (
IEEE
,
New York
,
2017
), p.
132
.
11.
W.
Kern
,
Proc. Electrochem. Soc.
137
,
1887
(
1990
).
12.
S.
Podenok
,
M.
Sveningsson
,
K.
Hansen
, and
E. E. B.
Campbell
,
Nano
01
,
87
(
2006
).
13.
R. G.
Forbes
,
C. J.
Edgcombe
, and
U.
Valdrè
,
Ultramicroscopy
95
,
57
(
2003
).
14.
L.
Nilsson
,
O.
Groening
,
C.
Emmenegger
,
O.
Kuettel
,
E.
Schaller
,
L.
Schlapbach
,
H.
Kind
,
J.-M.
Bonard
, and
K.
Kern
,
Appl. Phys. Lett.
76
,
2071
(
2000
).
15.
D.
Cai
and
L.
Liu
,
AIP Adv.
3
,
122103
(
2013
).
16.
P.
Pal
and
K.
Sato
,
Micro Nano Syst. Lett.
3
,
6
(
2015
).
17.
P.
Pal
and
S. S.
Singh
,
Engineering
5
,
1
(
2013
).
18.
P.
Pal
and
S. S.
Singh
,
Micro Nano Syst. Lett.
1
,
1
(
2013
).
19.
X.-P.
Wu
and
W. H.
Ko
,
Sens. Actuators
18
,
207
(
1989
).
20.
N.
Wilke
,
M. L.
Reed
, and
A.
Morrissey
,
J. Micromech. Microeng.
16
,
808
(
2006
).
21.
M.
Smiljanić
,
Ž
Lazić
,
B.
Radjenović
,
M.
Radmilović-Radjenović
, and
V.
Jović
,
Micromachines
10
,
102
(
2019
).
22.
K.
Tokoro
,
D.
Uchikawa
,
M.
Shikida
, and
K.
Sato
,
MHA’98. Proceedings of the 1998 International Symposium on Micromechatronics and Hum. Science—Creation of New Industry (Cat. No.98TH8388)
, Nagoya, Japan, 25–28 November 1998 (
IEEE
,
New York
,
1998
), pp.
65
70
.
23.
K.
Sato
,
M.
Shikida
,
T.
Yamashiro
,
K.
Asaumi
,
Y.
Iriye
, and
M.
Yamamoto
,
Sens. Actuators A Phys.
73
,
131
(
1999
).
24.
S.
Franssila
,
Introduction to Microfabrication
(
Wiley
,
Chichester
,
2010
).
25.
C.
Strandman
,
L.
Rosengren
,
H. G. A.
Elderstig
, and
Y.
Backlund
,
J. Microelectromech. Syst.
4
,
213
(
1995
).
26.
P.
Pal
,
K.
Sato
,
M.
Shikida
, and
M. A.
Gosálvez
,
Sens. Actuators A Phys.
154
,
192
(
2009
).
27.
M. M.
Smiljanić
,
V.
Jović
, and
Ž
Lazić
,
J. Micromech. Microeng.
22
,
115011
(
2012
).
28.
I. J.
Chung
,
D. B.
Murfett
,
A.
Hariz
, and
M. R.
Haskard
,
J. Mater. Sci.
32
,
4999
(
1997
).
29.
A.
Bagolini
,
A.
Faes
, and
M.
Decarli
,
J. Microelectromech. Syst.
19
,
1254
(
2010
).
30.
I.
Zubel
,
I.
Barycka
,
K.
Kotowska
, and
M. X.
Kramkowska
,
Sens. Actuators A Phys.
87
,
163
(
2001
).
31.
S.
Edler
 et al,
J. Appl. Phys.
122
,
124503
(
2017
).
32.
C.
Prommesberger
,
M.
Bachmann
,
F.
Dusberg
,
C.
Langer
,
R.
Lawrowski
,
M.
Hofmann
,
A.
Pahlke
, and
R.
Schreiner
,
IEEE Trans. Electron Devices
64
,
5128
(
2017
).
34.
S. I.
Daradkeh
and
M. S.
Mousa
,
Appl. Microsc.
47
,
86
(
2017
).
35.
36.
N.
Egorov
and
E.
Sheshin
,
Field Emission Electronics
(
Springer
,
Cham
,
2017
).
37.
W. I.
Karain
,
L. V.
Knight
,
D. D.
Allred
, and
A.
Reyes-Mena
,
J. Vac. Sci. Technol. A
12
,
2581
(
1994
).
38.
K. X.
Liu
,
C.-J.
Chiang
, and
J. P.
Heritage
,
J. Appl. Phys.
99
,
034502
(
2006
).
39.
C. B.
Duke
and
M. E.
Alferieff
,
J. Chem. Phys.
46
,
923
(
1967
).
40.
T.
Hirano
,
S.
Kanemaru
, and
J.
Itoh
,
J. Vac. Sci. Technol. B
14
,
3357
(
1996
).
41.
S.
Kanemaru
,
T.
Hirano
,
H.
Tanoue
, and
J.
Itoh
,
Appl. Surf. Sci.
111
,
218
(
1997
).
42.
H.
Murata
,
H.
Shinya
,
T.
Ikeda
,
K.
Taguchi
,
E.
Rokuta
,
H.
Shimoyama
,
M.
Nagao
, and
K.
Murakami
,
2018 31st International Vacuum Nanoelectronics Conference
, Kyoto, Japan, 9–13 July 2018 (
IEEE
,
New York
,
2018
), pp.
1
2
.
You do not currently have access to this content.