Our study refers to the highly stretchable elastomer PDMS (polydimethylsiloxane), a material used with a wide range of applications. Its basic mechanical properties can be tuned, e.g., by varying the curing conditions; moreover, its surface properties can be tuned by modification techniques. We modified our PDMS by irradiating the samples with an excimer lamp at 172 nm. Such a treatment hardens the elastomer at the surface, and it becomes silicalike; the sample changes to a “quasi” two-layer system with a graded interface. When such samples are stretched, surface cracks occur beyond a critical strain. The increase of crack length with increasing strain is evaluated by means of video screenshots. The impact of the curing conditions is addressed by analyzing samples prepared at different cross-linking temperatures, resulting in differing bulk properties but similar surface properties. Crack length and crack velocity are evaluated with each sample based on single randomly chosen cracks. The results are discussed on the basis of theoretical concepts for channeling cracks in multilayer systems with polymeric substrates. Typically, with applications, random cracks should develop at high strain only and, if present, should propagate slowly along the surface but not into the depth of the sample. Our investigation shows that the mechanical material properties of the substrate are vital with respect to such stable cracking, rather than the surface properties. In particular, the curing conditions chosen for the substrate are essential to reduce cracking, a fact less regarded with applications so far.
Skip Nav Destination
Article navigation
January 2021
Research Article|
December 07 2020
Insights from evaluation of surface cracks in surface-hardened polydimethylsiloxane by means of video analysis
Special Collection:
Electron, Ion, and Photon Beam Technology and Nanofabrication, EIPBN 2020
Miriam Schröer;
Miriam Schröer
School for Electrical, Information and Media Engineering, University of Wuppertal
, Rainer-Gruenther-Str. 21, D-42119 Wuppertal, Germany
Search for other works by this author on:
Hella-Christin Scheer
Hella-Christin Scheer
a)
School for Electrical, Information and Media Engineering, University of Wuppertal
, Rainer-Gruenther-Str. 21, D-42119 Wuppertal, Germany
Search for other works by this author on:
a)
Electronic mail: scheer@uni-wuppertal.de
Note: This paper is part of the collection: Electron, Ion, and Photon Beam Technology and Nanofabrication, EIPBN 2020.
J. Vac. Sci. Technol. B 39, 013001 (2021)
Article history
Received:
August 17 2020
Accepted:
November 10 2020
Citation
Miriam Schröer, Hella-Christin Scheer; Insights from evaluation of surface cracks in surface-hardened polydimethylsiloxane by means of video analysis. J. Vac. Sci. Technol. B 1 January 2021; 39 (1): 013001. https://doi.org/10.1116/6.0000550
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00
259
Views