Our study refers to the highly stretchable elastomer PDMS (polydimethylsiloxane), a material used with a wide range of applications. Its basic mechanical properties can be tuned, e.g., by varying the curing conditions; moreover, its surface properties can be tuned by modification techniques. We modified our PDMS by irradiating the samples with an excimer lamp at 172 nm. Such a treatment hardens the elastomer at the surface, and it becomes silicalike; the sample changes to a “quasi” two-layer system with a graded interface. When such samples are stretched, surface cracks occur beyond a critical strain. The increase of crack length with increasing strain is evaluated by means of video screenshots. The impact of the curing conditions is addressed by analyzing samples prepared at different cross-linking temperatures, resulting in differing bulk properties but similar surface properties. Crack length and crack velocity are evaluated with each sample based on single randomly chosen cracks. The results are discussed on the basis of theoretical concepts for channeling cracks in multilayer systems with polymeric substrates. Typically, with applications, random cracks should develop at high strain only and, if present, should propagate slowly along the surface but not into the depth of the sample. Our investigation shows that the mechanical material properties of the substrate are vital with respect to such stable cracking, rather than the surface properties. In particular, the curing conditions chosen for the substrate are essential to reduce cracking, a fact less regarded with applications so far.

1.
P.
Kim
,
K. W.
Kwon
,
M. C.
Park
,
S. H.
Lee
,
S. M.
Kim
, and
K. Y.
Suh
,
Biochip J.
2
,
1
(
2008
).
2.
M. A.
Unger
,
H.-P.
Chou
,
T.
Thorsen
,
A.
Scherer
, and
S. R.
Quake
,
Science
288
,
113
(
2000
).
3.
E.
Delamarche
,
A.
Bernard
,
H.
Schmid
,
A.
Bietsch
,
B.
Michel
, and
H.
Biebuyck
,
J. Am. Chem. Soc.
120
,
500
(
1998
).
4.
S.
Rosset
and
H. R.
Shea
,
Appl. Phys. A
110
,
281
(
2013
).
5.
S.
Wagner
and
S.
Bauer
,
MRS Bull.
37
,
207
(
2012
).
6.
S.
Lacour
,
J.
Jones
,
S.
Wagner
,
T.
Li
, and
Z.
Suo
,
Proc. IEEE
93
,
1459
(
2005
).
7.
A.
Polywka
,
L.
Stegers
,
O.
Kraudelat
,
T.
Riedl
,
T.
Jakob
, and
P.
Görrn
,
Nanomaterials
6
,
168
(
2016
).
8.
A.
Polywka
,
T.
Jakob
,
L.
Stegers
,
T.
Riedl
, and
P.
Görrn
,
Adv. Mater.
27
,
3755
(
2015
).
9.
H.
Schmid
and
B.
Michel
,
Macromolecules
33
,
3042
(
2000
).
10.
T. W.
Odom
,
J. C.
Love
,
D. B.
Wolfe
,
K. E.
Paul
, and
G. M.
Whitesides
,
Langmuir
18
,
5314
(
2002
).
11.
M.
Verschuuren
,
M.
Menges
,
Y.
Ni
,
H.
van Sprang
, and
A.
Polman
,
Adv. Opt. Technol.
6
,
243
(
2017
).
12.
F.
van Delft
,
R.
van de Lar
,
M.
Verschuuren
,
E.
Platzgummer
, and
H.
Loeschner
,
SPIE Proc.
7545
,
75450S
(
2010
).
13.
P.
Mazurek
,
S.
Vudayagiri
, and
A. L.
Skov
,
Chem. Soc. Rev.
48
,
1448
(
2018
).
14.
R.
Seghir
and
S.
Arscott
,
Sens. Actuators A
230
,
33
(
2015
).
15.
H.
Hillborg
,
J. F.
Ankner
,
U. W.
Gedde
,
G. D.
Smith
,
H. K.
Yasuda
, and
K.
Wikström
,
Polymer
41
,
6851
(
2000
).
16.
V.
Danilov
,
H.-E.
Wagner
, and
J.
Meichsner
,
Plasma Process. Polym.
8
,
1095
(
2011
).
17.
Y.
Berdichevsky
,
J.
Khandurina
,
A.
Guttman
, and
Y.-H.
Lo
,
Sens. Actuators B
97
,
402
(
2004
).
18.
K.
Efimenko
,
W. E.
Wallace
, and
J.
Genzer
,
J. Colloid Interface Sci.
254
,
306
(
2002
).
19.
I. D.
Johnston
,
D. K.
McCluskey
,
C. K. L.
Tan
, and
M. C.
Tracey
,
J. Micromech. Microeng.
24
,
105017
(
2014
).
20.
P.
Bodö
and
J.-E.
Sundgren
,
Thin Solid Films
136
,
147
(
1986
).
21.
A.
Delcorte
,
S.
Befahy
,
C.
Poleunis
,
M.
Troosters
, and
P.
Bertrand
,
Adhesion Aspects Thin Films
2
,
1
(
2004
).
22.
K. L.
Mills
,
X.
Zhu
,
D.
Lee
,
S.
Takayama
, and
M. D.
Thouless
,
MRS Proc.
924
,
Z07
(
2006
).
23.
K. L.
Mills
,
X.
Zhu
,
S.
Takayama
, and
M. D.
Thouless
,
J. Mater. Res.
23
,
37
(
2008
).
24.
S.
Befahy
,
P.
Lipnik
,
T.
Pardoen
,
C.
Nascimento
,
B.
Patris
,
B.
Bertrand
, and
S.
Yunus
,
Langmuir
26
,
3372
(
2010
).
25.
R. N.
Palchesko
,
L.
Zhang
,
Y.
Sun
, and
A. W.
Feinberg
,
PLoS One
7
,
e51499
(
2012
).
26.
V. M.
Graubner
,
D.
Clemens
,
T.
Gutberlet
,
R.
Kötz
,
T.
Lippert
,
O.
Nguyen
,
B.
Schnyder
, and
A.
Wokaun
,
Langmuir
21
,
8940
(
2005
).
27.
N.
Chou
,
J.
Jeong
, and
S.
Kim
,
J. Micromech. Microeng.
23
,
125035
(
2013
).
28.
M. D.
Thouless
,
J. Am. Ceram. Soc.
73
,
2144
(
1990
).
29.
N. J.
Douville
,
Z.
Li
,
S.
Takayama
, and
M. D.
Thouless
,
Soft Matter
7
,
6493
(
2011
).
30.
M.
Papenheim
,
W.
Eidemüller
,
S.
Wang
,
C.
Steinberg
, and
H.-C.
Scheer
,
Microelectron. Eng.
155
,
79
(
2016
).
31.
R.
Seghir
and
S.
Arscott
,
Sci. Rep.
5
,
14787
(
2015
).
32.
B. C.
Kim
,
T.
Matsuoka
,
C.
Moraes
,
J.
Huang
,
M. D.
Thouless
, and
S.
Takayama
,
Sci. Rep.
3
,
3027
(
2013
).
33.
J.
Huang
,
B. C.
Kim
,
S.
Takayama
, and
M. D.
Thouless
,
J. Mater. Sci
49
,
255
(
2014
).
34.
T.
Baetens
,
E.
Pallecchi
,
V.
Thomy
, and
S.
Arscott
,
Sci. Rep.
8
,
9492
(
2018
).
35.
F.
Meng
,
J. L.
David
,
S.
Bollin
,
M. E.
Nichols
, and
M. D.
Thouless
,
Int. J. Sol. Struct.
132–133
,
105
(
2017
).
36.
G. D.
Schutter
,
NDT&E Int.
35
,
209
(
2002
).
37.
J. J.
Vlassak
,
Int. J. Fracture
119/120
,
299
(
2003
).
38.
J. L.
Beuth
,
Int. J. Solids Struct.
29
,
1657
(
1992
).
39.
A. R.
Zak
and
M. L.
Williams
,
Trans. ASME
30
,
142
(
1963
).
40.
V. B.
Shenoy
,
A. F.
Schwartzman
, and
L. B.
Freund
,
Int. J. Fracture
109
,
29
(
2001
).
41.
M.
Leifels
,
A.
Mayer
, and
H.-C.
Scheer
,
J. Vac. Sci. Technol. B
37
,
061805
(
2019
).
42.
D.
Gross
and
T.
Seelig
,
Bruchmechanik
(
Springer
,
New York
,
2016
).
43.
D.
Broeck
,
Elementary Engineering Fracture Mechanics
(
Nordhoff
, Leiden,
1974
).
44.
M.-F.
Kanninen
and
C. H.
Popelar
,
Advanced Fracture Mechanics
(
Oxford University
,
New York
,
1985
).
45.
E. N.
Dulaney
and
W. F.
Brace
,
J. Appl. Phys.
31
,
2233
(
1960
).
46.
J. P.
Parmigiani
and
M. D.
Thouless
,
J. Mech. Phys. Solids
54
,
206
(
2006
).
47.
M. D.
Thouless
,
Z.
Li
,
N. J.
Douville
, and
S.
Takayama
,
J. Mech. Phys. Solids
59
,
1927
(
2011
).
48.
G. D.
Genesky
and
C.
Cohen
,
Polymer
51
,
4152
(
2010
).
49.
K.
Efimenko
,
M.
Rackaitis
,
E.
Manias
,
A.
Vaziri
,
L.
Mahadevan
, and
J.
Genzer
,
Nat. Mater.
4
,
293
(
2005
).
50.
Y.
Hashimoto
,
S.
Matsuzawa
, and
T.
Yamamoto
,
Surf. Interface Anal.
50
,
752
(
2018
).
You do not currently have access to this content.