The design, fabrication, and characterization of single metal gate layer, metal-oxide-semiconductor (MOS) quantum dot devices robust against dielectric breakdown are presented as prototypes for future diagnostic qubits. These devices were developed as a preliminary solution to a longer term goal of a qubit platform for intercomparison between materials or for in-line diagnostics and to provide a testbed for establishing classical measurements predictive of coherence performance. For this stage, we seek a robust MOS design that is compatible with wafer and chip architectures, which has a reduced process overhead and is sufficiently capable of challenging and advancing our measurement capabilities. In this report, we present our initial batch of silicon MOS devices using a single gate layer, which have not exhibited any failures with gate voltage excursions >10 V but do exhibit the reduced electrostatic control expected of a single gate layer design. We observe quantum dot formation, capacitive charge sensing between channels, and reasonable effective electron temperatures that enable spin qubit studies. The costs and benefits of the trade-off between device performance and fabrication efficiency will be discussed, as well as opportunities for future improvements.

1.
A. M.
Tyryshkin
et al.,
Nat. Mater.
11
,
143
(
2012
).
2.
C.
Tahan
and
R.
Joynt
,
Phys. Rev. B
71
,
075315
(
2005
).
3.
A.
Morello
et al.,
Nature
467
,
687
(
2010
).
4.
J.
Elzerman
,
R.
Hanson
,
L. W.
Van Beveren
,
B.
Witkamp
,
L.
Vandersypen
, and
L. P.
Kouwenhoven
,
Nature
430
,
431
(
2004
).
5.
D.
Keith
,
M.
House
,
M.
Donnelly
,
T.
Watson
,
B.
Weber
, and
M.
Simmons
,
Phys. Rev. X
9
,
041003
(
2019
).
6.
P.
Harvey-Collard
et al.,
Phys. Rev. X
8
,
021046
(
2018
).
7.
M.
Veldhorst
et al.,
Nature
526
,
410
(
2015
).
8.
R.
Zhao
et al.,
Nat. Commun.
10
,
1
(
2019
).
9.
J.
Dodson
et al., “Fabrication process and failure analysis for robust quantum dots in silicon,” preprint arXiv:2004.05683 (2020).
10.
K.
Tang
,
H. S.
Kim
,
A. N.
Ramanayaka
,
D. S.
Simons
, and
J. M.
Pomeroy
,
J. Phys. Commun.
4
,
035006
(
2020
).
11.
K. J.
Dwyer
,
J. M.
Pomeroy
,
D. S.
Simons
,
K.
Steffens
, and
J.
Lau
,
J. Phys. D: Appl. Phys.
47
,
345105
(
2014
).
12.
L. A.
Tracy
,
T.-M.
Lu
,
N.
Bishop
,
G.
Ten Eyck
,
T.
Pluym
,
J.
Wendt
,
M.
Lilly
, and
M.
Carroll
,
Appl. Phys. Lett.
103
,
143115
(
2013
).
13.
S.
Rochette
et al.,
Appl. Phys. Lett.
114
,
083101
(
2019
).
14.
E. B.
Ramirez
,
F.
Sfigakis
,
S.
Kudva
, and
J.
Baugh
,
Semicond. Sci. Technol.
35
,
015002
(
2019
).
15.
P.
Harvey-Collard
et al.,
Nat. Commun.
8
,
1029
(
2017
).
16.
W.
Lim
,
H.
Huebl
,
L.
Willems van Beveren
,
S.
Rubanov
,
P.
Spizzirri
,
S.
Angus
,
R.
Clark
, and
A.
Dzurak
,
Appl. Phys. Lett.
94
,
173502
(
2009
).
17.
H.
Eenink
,
L.
Petit
,
W.
Lawrie
,
J.
Clarke
,
L.
Vandersypen
, and
M.
Veldhorst
,
Nano Lett.
19
,
8653
(
2019
).
18.
M.
Brauns
,
S. V.
Amitonov
,
P.-C.
Spruijtenburg
, and
F. A.
Zwanenburg
,
Sci. Rep.
8
,
5690
(
2018
).
19.
J.-S.
Kim
,
A. M.
Tyryshkin
, and
S. A.
Lyon
,
Appl. Phys. Lett.
110
,
123505
(
2017
).
20.
COMSOL multiphysics is a commercial software that is identified in this paper to foster understanding. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology nor does it imply that the software identified is necessarily the best available for the purpose.
21.
P. R.
Gray
,
P.
Hurst
,
R. G.
Meyer
, and
S.
Lewis
,
Analysis and Design of Analog Integrated Circuits
(
Wiley
,
New York
,
2001
).
22.
J. M.
Nichol
,
L. A.
Orona
,
S. P.
Harvey
,
S.
Fallahi
,
G. C.
Gardner
,
M. J.
Manfra
, and
A.
Yacoby
,
npj Quantum Inf.
3
,
3
(
2017
).
23.
J.
Gorman
,
D.
Hasko
, and
D.
Williams
,
Phys. Rev. Lett.
95
,
090502
(
2005
).
24.
P.
Torresani
,
M.
Martínez-Pérez
,
S.
Gasparinetti
,
J.
Renard
,
G.
Biasiol
,
L.
Sorba
,
F.
Giazotto
, and
S.
De Franceschi
,
Phys. Rev. B
88
,
245304
(
2013
).
25.
L. P.
Kouwenhoven
,
C. M.
Marcus
,
P. L.
McEuen
,
S.
Tarucha
,
R. M.
Westervelt
, and
N. S.
Wingreen
, “Electron transport in quantum dots,” in Mesoscopic Electron Transport (Springer, New York, 1997), pp. 105–214.
26.
C.
Beenakker
,
Phys. Rev. B
44
,
1646
(
1991
).
27.
L.
DiCarlo
,
H.
Lynch
,
A.
Johnson
,
L.
Childress
,
K.
Crockett
,
C.
Marcus
,
M.
Hanson
, and
A.
Gossard
,
Phys. Rev. Lett.
92
,
226801
(
2004
).
28.
A.
Rossi
,
T.
Ferrus
, and
D.
Williams
,
Appl. Phys. Lett.
100
,
133503
(
2012
).
You do not currently have access to this content.