Microfluidic devices typically require complex shapes such as funnels, spirals, splitters, channels with different widths, or customized objects of arbitrary complexity with a smooth transition between these elements. Device layouts are generally designed by software developed for the design of integrated circuits or by general computer-aided design drawing tools. Both methods have their limitations, making these tasks time consuming. Here, a script-based, time-effective method to generate the layout of various microfluidic chips with complex geometries is presented. The present work uses the nanolithography toolbox (NT), a platform-independent software package, which employs parameterized fundamental blocks (cells) to create microscale and nanoscale structures. In order to demonstrate the functionality and efficiency of the NT, a few classical microfluidic devices were designed using the NT and then fabricated in glass/silicon using standard microfabrication techniques and in poly(dimethylsiloxane) using soft lithography as well as more complex techniques used for flow-through calorimetry. In addition, the functionality of a few of the fabricated devices was tested. The powerful method proposed allows the creation of microfluidic devices with complex layouts in an easy way, simplifying the design process and improving design efficiency. Thus, it holds great potential for broad applications in microfluidic device design.

1.
S. C.
Terry
,
J. H.
Jerman
, and
J. B.
Angell
,
IEEE Trans. Electron Devices
26
,
1880
(
1979
).
2.
A.
Manz
,
N.
Graber
, and
H. M.
Widmer
,
Sens. Actuators B Chem.
1
,
244
(
1990
).
3.
A.
Manz
,
J. C.
Fettinger
,
E.
Verpoorte
,
H.
Ludi
,
H. M.
Widmer
, and
D. J.
Harrison
,
Trends Anal. Chem.
10
,
144
(
1991
).
4.
A.
Manz
,
D. J.
Harrison
,
E. M. J.
Verpoorte
,
J. C.
Fettinger
,
H.
Ludi
, and
H. M.
Widmer
,
Chimia
45
,
103
(
1991
).
5.
D. J.
Harrison
,
K.
Fluri
,
K.
Seiler
,
Z. H.
Fan
,
C. S.
Effenhauser
, and
A.
Manz
,
Science
261
,
895
(
1993
).
6.
M. U.
Kopp
,
A. J.
de Mello
, and
A.
Manz
,
Science
280
,
1046
(
1998
).
7.
K. C.
Balram
 et al,
J. Res. Nat. Inst. Stand. Technol.
121
,
464
(
2016
).
8.
A. R.
Kopf-Sill
,
A.
van den Berg
,
W.
Olthuis
, and
P.
Bergveld
, μTAS 2000 (Enschede, Netherlands, Springer, Dordrecht,
2000
), pp.
233
238
, available at https://www.ingentaconnect.com/content/scs/chimia/1991/00000045/00000004/art00003#expand/collapse.
9.
S. S.
Kuntaegowdanahalli
,
A. A. S.
Bhagat
,
G.
Kumar
, and
I.
Papautsky
,
Lab Chip
9
,
2973
(
2009
).
10.
J.
Ducree
,
S.
Haeberle
,
S.
Lutz
,
S.
Pausch
,
F.
von Stetten
, and
R.
Zengerle
,
J. Micromech. Microeng.
17
,
S103
(
2007
).
11.
M.
Keller
 et al,
RSC Adv.
5
,
89603
(
2015
).
12.
Y.
Zeng
,
R.
Novak
,
J.
Shuga
,
M. T.
Smith
, and
R. A.
Mathies
,
Anal. Chem.
82
,
3183
(
2010
).
13.
J. K.
Park
,
C. D. M.
Campos
,
P.
Neuzil
,
L.
Abelmann
,
R. M.
Guijt
, and
A.
Manz
,
Lab Chip
15
,
3495
(
2015
).
14.
U.
Backofen
,
F. M.
Matysik
, and
C. E.
Lunte
,
Anal. Chem.
74
,
4054
(
2002
).
15.
H.
Zhu
 et al,
Microfluid. Nanofluid.
24
,
7
(
2019
).
16.
D. J.
Harrison
,
A.
Manz
,
Z. H.
Fan
,
H.
Ludi
, and
H. M.
Widmer
,
Anal. Chem.
64
,
1926
(
1992
).
17.
S. K. W.
Dertinger
,
D. T.
Chiu
,
N. L.
Jeon
, and
G. M.
Whitesides
,
Anal. Chem.
73
,
1240
(
2001
).
18.
J.
Feng
 et al,
Sens. Actuators B
312
,
127967
(
2020
).
19.
S.
Ni
,
H.
Zhu
,
P.
Neuzil
, and
L.
Yobas
,
J. Microelectromech. Syst.
29
,
1
(
2020
).
20.
S.
Ni
,
H.
Zhu
,
P.
Neuzil
, and
L.
Yobas
,
2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)
, Vancouver, Canada (IEEE,
2020
), pp.
1006
1009
.
21.
D. C.
Duffy
,
J. C.
McDonald
,
O. J. A.
Schueller
, and
G. M.
Whitesides
,
Anal. Chem.
70
,
4974
(
1998
).
22.
K. M.
Ririe
,
R. P.
Rasmussen
, and
C. T.
Wittwer
,
Anal. Biochem.
245
,
154
(
1997
).
23.
See the supplementary material’s Secs. A–H at https://doi.org/10.1116/6.0000562 for all scripts of all the structures.

Supplementary Material

You do not currently have access to this content.