The modification of surface properties frequently requires the binding of suitable compounds to the original surface. Silanes or thiols can be directly covalently bonded to either Si-based materials or Au, thus ruling out polymers. Here, we show the utilization of a layer of SiO2 with a thickness of a few nanometers that serves as a cross-linker between polymers and silanes providing covalent bonding to the surface. We deposited a polymer onto a thermally oxidized microstructured Si surface followed by subsequent Si removal. We demonstrated a Si-based nanotechnology fabrication method that can be generally used to modify the surface properties of practically any polymer via SiO2 cross-linking. This can produce any topology, including microstructures, nanostructures, or composite microstructure/nanostructures terminating in different shapes, since all the steps involving polymer deposition are conducted at room temperature after the Si surface has been thermally oxidized. This technique opens a broad field of new applications for polymers in microstructures and nanostructures that have stable water surface contact angle values with the contact angle set by demand for gecko-mimicking structures or lotus leaf inspired surfaces.

1.
A. K.
Geim
,
S. V.
Dubonos
,
I. V.
Grigorieva
,
K. S.
Novoselov
,
A. A.
Zhukov
, and
S. Y.
Shapoval
,
Nat. Mater.
2
,
461
(
2003
).
2.
H. E.
Jeong
,
J.-K.
Lee
,
H. N.
Kim
,
S. H.
Moon
, and
K. Y.
Suh
,
Proc. Natl. Acad. Sci. U.S.A.
106
,
5639
(
2009
).
3.
M. P.
Murphy
,
S.
Kim
, and
M.
Sitti
,
ACS Appl. Mater. Interfaces
1
,
849
(
2009
).
4.
Y.
Zhang
,
C.-T.
Lin
, and
S.
Yang
,
Small
6
,
768
(
2010
).
5.
Y.
Wang
,
H.
Hu
,
J.
Shao
, and
Y.
Ding
,
ACS Appl. Mater. Interfaces
6
,
2213
(
2014
).
6.
B.
Wang
,
X.
Xue
,
X.
Liu
,
P.
Neuzžil
,
B.
Ma
,
W.
Yuan
,
J.
Luo
, and
C.
Jiang
,
Appl. Mater. Today
13
,
271
(
2018
).
7.
O. N.
Tufte
,
P. W.
Chapman
, and
D.
Long
,
J. Appl. Phys.
33
,
3322
(
1962
).
8.
K. E.
Petersen
,
Proc. IEEE
70
,
420
(
1982
).
9.
W. L.
Black
,
M.
Santiago
,
S.
Zhu
, and
A. D.
Stroock
,
Anal. Chem.
92
,
716
(
2019
).
10.
E.
Hosseinian
and
O. N.
Pierron
,
Nanoscale
5
,
12532
(
2013
).
11.
B. J.
Kim
and
E.
Meng
,
Polym. Adv. Technol.
27
,
564
(
2016
).
12.
Y.
Wang
,
Hongmiao
Tian
,
Jinyou
Shao
,
Dan
Sameoto
,
Xiangming
Li
,
Li
Wang
,
Hong
Hu
,
Yucheng
Ding
, and
Bingheng
Lu
,
ACS Appl. Mater. Interfaces
8
,
10029
(
2016
).
13.
G. T. A.
Kovacs
,
N. I.
Maluf
, and
K. E.
Petersen
,
Proc. IEEE
86
,
1536
(
1998
).
14.
J. M.
Bustillo
,
R. T.
Howe
, and
R. S.
Muller
,
Proc. IEEE
86
,
1552
(
1998
).
15.
S.-J.
Kim
,
D. S.
Lee
,
I. G.
Kim
,
D. W.
Sohn
,
J. Y.
Park
,
B. K.
Choi
, and
S. W.
Kim
,
Kaohsiung J. Med. Sci.
28
,
123
(
2012
).
16.
J.
Ortigoza-Diaz
,
K.
Scholten
,
C.
Larson
,
A.
Cobo
,
T.
Hudson
,
J.
Yoo
,
A.
Baldwin
,
A.
Weltman Hirschberg
, and
E.
Meng
,
Micromachines
9
,
422
(
2018
).
17.
J. S.
Song
,
S.
Lee
,
S. H.
Jung
,
G. C.
Cha
, and
M. S.
Mun
,
J. Appl. Polym. Sci.
112
,
3677
(
2009
).
18.
A. N.
Koppes
,
M.
Kamath
,
C. A.
Pfluger
,
D. D.
Burkey
,
M.
Dokmeci
,
L.
Wang
, and
R. L.
Carrier
,
Biofabrication
8
,
035011
(
2016
).
19.
Y. S.
Chi
,
J. K.
Lee
,
S.-g.
Lee
, and
I. S.
Choi
,
Langmuir
20
,
3024
(
2004
).
20.
G.
Parsons
,
Appl. Phys. Lett.
59
,
2546
(
1991
).
21.
C.
Deckert
,
Adhesion Measurement of Thin Films, Thick Films, and Bulk Coatings
(
West Conshohocken
,
PA
,
1978
).
22.
P. V.
Der Voort
and
E.
Vansant
,
J. Liq. Chromatogr. Relat. Technol.
19
,
2723
(
1996
).
23.
N.
Azizi
and
M. R.
Saidi
,
Organometallics
23
,
1457
(
2004
).
24.
E. R.
Castro
,
M. D.
Tarn
,
P.
Ginterová
,
H.
Zhu
,
Y.
Xu
, and
P.
Neužil
,
Microfluid. Nanofluidics
22
,
51
(
2018
).
25.
C.
Vericat
,
M.
Vela
,
G.
Benitez
,
P.
Carro
, and
R.
Salvarezza
,
Chem. Soc. Rev.
39
,
1805
(
2010
).
26.
J. T.
Wu
,
C. H.
Huang
,
W. C.
Liang
,
Y. L.
Wu
,
J.
Yu
, and
H. Y.
Chen
,
Macromol. Rapid Commun.
33
,
922
(
2012
).
27.
K.
Autumn
and
J.
Puthoff
, in
Biological Adhesives
(
Springer
,
Cham
,
2016
), pp.
245
280
.
28.
S. S.
Latthe
,
C.
Terashima
,
K.
Nakata
, and
A.
Fujishima
,
Molecules
19
,
4256
(
2014
).
29.
K. C.
Balram
 et al,
J. Res. Natl. Inst. Stand.
121
,
464
(
2016
).
30.
F.
Laerme
,
A.
Schilp
,
K.
Funk
, and
M.
Offenberg
,
Technical Digest. IEEE MEMS 1999 Conference
,
Orlando, FL
,
21–21 Jan. 1999
(
IEEE
,
New York
,
1999
), pp.
211
216
.
31.
T. S.
Kustandi
,
V. D.
Samper
,
D. K.
Yi
,
W. S.
Ng
,
P.
Neuzil
, and
W.
Sun
,
Adv. Funct. Mater.
17
,
2211
(
2007
).
32.
J.
Feng
,
Z.
Fohlerová
,
X.
Liu
,
H.
Chang
, and
P.
Neužil
,
Sens. Actuator B Chem.
269
,
288
(
2018
).
33.
D.
Xu
,
B.
Xiong
,
G.
Wu
,
Y.
Wang
,
X.
Sun
, and
Y.
Wang
,
J. Microelectromech. Syst.
21
,
1436
(
2012
).
34.
T. A.
Harder
,
T.-J.
Yao
,
Q.
He
,
C.-Y.
Shih
, and
Y.-C.
Tai
,
Technical Digest. IEEE MEMS 2002 Conference
,
Las Vegas, NV
,
24–24 Jan. 2002
(
IEEE
,
New York
,
2002
), pp.
435
438
.
35.
F.
Ye
,
Z.
Yan
,
H.
Zhang
,
H.
Chang
, and
P.
Neuzil
,
Trends Anal. Chem.
126
,
115858
(
2020
).
36.
W.
Sun
,
P.
Neuzil
,
T. S.
Kustandi
,
S.
Oh
, and
V. D.
Samper
,
Biophys. J.
89
,
L14
(
2005
).
37.
V.
Svatoš
,
W.
Sun
,
R.
Kalousek
,
I.
Gablech
,
J.
Pekárek
, and
P.
Neužil
,
Sens. Actuator A Phys.
271
,
217
(
2018
).
You do not currently have access to this content.