Focused ion beam (FIB) sample preparation for electron microscopy often requires large volumes of materials to be removed. Prior efforts to increase the rate of bulk material removal were mainly focused on increasing the primary ion beam current. Enhanced yield of etching at glancing ion beam incidence is known but has not found widespread use in practical applications. In this study, etching at glancing ion beam incidence was explored for its advantages in increasing the rate of bulk material removal. Anomalous enhancement of material removal at glancing angles of ion beam incidence was observed with single-raster etching in along-the-slope direction with toward-FIB direction of raster propagation. Material removal was inhibited in an away-from-FIB direction of raster propagation. The effects of glancing angles and ion doses on depth of cut and volume of removed materials were also recorded. We demonstrated that the combination of single-raster FIB etching at glancing incidence in along-the-slope direction with toward-FIB raster propagation and a “staircase” type of etching strategy holds promise for reducing the processing time for bulk material removal in FIB sample preparation applications.

1.
R.
Langford
and
A.
Petford-Long
,
J. Vac. Sci. Technol. A
19
,
2186
(
2001
).
2.
M.
Vasile
,
Z.
Niu
,
R.
Nassar
,
W.
Zhang
, and
S.
Liu
,
J. Vac. Sci. Technol. B
15
,
2350
(
1997
).
3.
T.
Ishitani
and
T.
Yaguchi
,
Microsc. Res. Tech.
35
,
320
(
1996
).
4.
I.
Schulmeyer
,
T.
Volkenandt
,
F.
Perez-Willard
,
M.
Kienle
,
R.
Hill
, and
J.
Marshman
, see https://www.zeiss.com/content/dam/smt/downloads/products_and_solutions/prosesscontroll/en_wp_focused_ion_beam_column.pdf for “ZEISS Focused Ion Beam Column: Enabling Precision and Long-Term Stability for Cutting Edge Crossbeam Applications,” March 2017; accessed May 2020.
5.
ThermoFisher Scientific
, see https://www.fei.com/document/Helios-G4-UX-materials-science-datasheet/#gsc.tab=0 for “Helios G4 UX DualBeam for Materials Science Datasheet,” 2019; accessed May 2020.
6.
7.
K. P.
Muller
,
U.
Weigmann
, and
H.
Burgause
,
Microelectron. Eng.
5
,
481
(
1986
).
8.
C.
Ebm
and
G.
Hobler
, Materials Research Society Symposium, Boston, January 2009 (Material Research Society, Pittsburgh, PA, 2009), Vol. 1181.
9.
W.
Boxleitner
and
G.
Hobler
,
Nucl. Instrum. Meth. B
180
,
125
(
2001
).
10.
A.
Svinstov
,
S.
Zatisev
,
G.
Lalev
,
S.
Dimov
,
V.
Velkova
, and
H.
Hirshy
,
Microelectron. Eng.
86
,
544
(
2009
).
11.
C.
Ebm
,
G.
Hobler
,
S.
Waid
, and
H. D.
Wanzenboeck
,
J. Vac. Sci. Technol. B
29
,
011031
(
2011
).
12.
S.
Lindsey
and
G.
Hobler
,
Nucl. Instrum. Meth. B
282
,
12
(
2012
).
13.
H. B.
Kim
,
G.
Hobler
,
A.
Stelger
,
A.
Lugstein
, and
E.
Bertagnolli
,
Nanotechnology
18
,
245303
(
2007
).
14.
H. B.
Kim
,
G.
Hobler
,
A.
Stelger
,
A.
Lugstein
, and
E.
Bertagnolli
,
Opt. Express
15
,
9444
(
2007
).
15.
S.
Lindsey
,
S.
Waid
,
G.
Hobler
,
H. D.
Wanzenboeck
, and
E.
Bertagnolli
,
Nucl. Instrum. Meth. B
341
,
77
(
2014
).
16.
H. S.
Yoon
,
C. S.
Kim
,
H. T.
Lee
, and
S. H.
Ahn
,
Vacuum
143
,
40
(
2017
).
17.
C.
Scheffler
,
R.
Livengood
,
H.
Prakasam
,
M.
Phaneuf
, and
K.
Lagarec
, ISTFA 2016, Fort Worth, TX, November 6–10, 2016 (ASM International, Cleveland, OH, 2016).
18.
V.
Ray
,
FIB User Group Meeting at ISTFA 2013
, San Jose, CA, November 3–7,
2013
).
19.
J.
Hazekamp
,
S.
Doherty
,
A.
Elsaesser
,
C.
Barnes
,
B.
O’Hagan
,
G.
McKerr
, and
C.
Howard
,
J. Microsc.
242
,
104
(
2010
).
20.
X.
Xu
,
A. D.
Ratta
,
J.
Sosonkina
, and
J.
Melgailnis
,
J. Vac. Sci. Technol. B
10
,
2675
(
1992
).
21.
T.
Ishitani
,
K.
Umemura
,
T.
Ohnishi
,
T.
Yaguchi
, and
T.
Kamino
,
J. Electron. Microsc.
53
,
443
(
2004
).
22.
L. A.
Giannuzzi
,
P.
Anzalone
, and
D.
Phifer
, NSTI-Nanotech, May 8–12, 2005, Anaheim, CA, NSTI Tech Connect Briefs, Vol. 2 (NSTI, Austin, TX,
2005
).
24.
H. B.
Kim
,
G.
Hobler
,
A.
Lugstein
, and
E.
Bertagnolli
,
J. Micromech. Microeng.
17
,
1178
(
2007
).
25.
L.
Giannuzi
and
F.
Stevie
,
Micron
30
,
197
(
1992
).
You do not currently have access to this content.