As ultraviolet (UV) sensors are often employed in external environments, they should be able to function efficiently outdoors while remaining unaffected by liquids or changes in humidity. In this study, we developed a tin (IV) oxide nanowire (SnO2 NW)/graphene heterostructure-based UV detector that can accurately detect UV light without being affected by exposure to liquids. A (3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl) phosphonic acid (HDF–PA) passivation layer was self-assembled on an SnO2 NW/graphene heterostructure sensing channel to make its surface superhydrophobic (contact angle of ∼154°). This configuration prevents UV sensing distortion due to current leakage in case the sensor is exposed to various liquids. HDF–PA, which is less than 1.5 nm thick, slightly reduces UV transmission, rendering it a suitable passivation material to repel external liquids. In addition, the heterostructure of SnO2 NWs and graphene, as a UV sensing channel, can provide higher UV sensitivity than that of pristine graphene. The proposed method can be applied to fabricate stable, sensitive, and robust optical sensors that can withstand various environmental conditions.

1.
A. K.
Geim
and
K. S.
Novoselov
,
Nat. Mater.
6
,
183
(
2007
).
2.
A. K.
Geim
,
Science
324
,
1530
(
2009
).
3.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
,
Science
306
,
666
(
2004
).
4.
H.
Qiao
 et al,
ACS Nano
9
,
1886
(
2015
).
5.
X.-W.
Fu
,
Z.-M.
Liao
,
Y.-B.
Zhou
,
H.-C.
Wu
,
Y.-Q.
Bie
,
J.
Xu
, and
D.-P.
Yu
,
Appl. Phys. Lett.
100
,
223114
(
2012
).
6.
H.
Chang
,
Z.
Sun
,
K. Y.-F.
Ho
,
X.
Tao
,
F.
Yan
,
W.-M.
Kwok
, and
Z.
Zheng
,
Nanoscale
3
,
258
(
2011
).
7.
N.
Gao
and
X.
Fang
,
Chem. Rev.
115
,
8294
(
2015
).
8.
C.
Xie
,
Y.
Wang
,
Z.-X.
Zhang
,
D.
Wang
, and
L.-B.
Luo
,
Nano Today
19
,
41
(
2018
).
9.
D. H.
Shin
and
S.-H.
Choi
,
Micromachines
9
,
350
(
2018
).
10.
M. H.
Huang
,
S.
Mao
,
H.
Feick
,
H.
Yan
,
Y.
Wu
,
H.
Kind
,
E.
Weber
,
R.
Russo
, and
P.
Yang
,
Science
292
,
1897
(
2001
).
11.
Q.
Wan
,
Q. H.
Li
,
Y. J.
Chen
,
T. H.
Wang
,
X. L.
He
,
J. P.
Li
, and
C. L.
Lin
,
Appl. Phys. Lett.
84
,
3654
(
2004
).
12.
M.
Razeghi
and
A.
Rogalski
,
J. Appl. Phys.
79
,
7433
(
1996
).
13.
S.
Basu
and
A.
Dutta
,
Sens. Actuators B
22
,
83
(
1994
).
14.
K. P.
Lawrence
,
T.
Douki
,
R. P. E.
Sarkany
,
S.
Acker
,
B.
Herzog
, and
A. R.
Young
,
Sci. Rep.
8
,
12722
(
2018
).
15.
D. A.
Lewis
,
J. B.
Travers
,
A. K.
Somani
, and
D. F.
Spandau
,
Oncogene
29
,
1475
(
2010
).
16.
J. J.
Bernard
,
R. L.
Gallo
, and
J.
Krutmann
,
Nat. Rev. Immunol.
19
,
688
(
2019
).
17.
Z.
Li
 et al,
IEEE Photonics J.
11
,
1
(
2019
).
18.
X. L.
Zhang
,
K. S.
Hui
, and
K. N.
Hui
,
Mater. Res. Bull.
48
,
305
(
2013
).
19.
X.
Kong
,
C.
Liu
,
W.
Dong
,
X.
Zhang
,
C.
Tao
,
L.
Shen
,
J.
Zhou
,
Y.
Fei
, and
S.
Ruan
,
Appl. Phys. Lett.
94
,
123502
(
2009
).
20.
T.-H.
Moon
,
M.-C.
Jeong
,
W.
Lee
, and
J.-M.
Myoung
,
Appl. Surf. Sci.
240
,
280
(
2005
).
21.
D.
Zhang
,
C.
Li
,
S.
Han
,
X.
Liu
,
T.
Tang
,
W.
Jin
, and
C.
Zhou
,
Appl. Phys. A
77
,
163
(
2003
).
22.
X.
Pan
,
T.
Zhang
,
Q.
Lu
,
W.
Wang
, and
Z.
Ye
,
RSC Adv.
9
,
37201
(
2019
).
23.
J.
Chen
,
W.
Ouyang
,
W.
Yang
,
J.-H.
He
, and
X.
Fang
,
Adv. Funct. Mater.
30
,
1909909
(
2020
).
24.
H.-Y.
Lee
,
W.-H.
Tsai
,
Y.-C.
Lin
, and
C.-T.
Lee
,
J. Vac. Sci. Technol. B
34
,
051207
(
2016
).
25.
S.
Li
,
Y.
Zhang
,
W.
Yang
,
H.
Liu
, and
X.
Fang
,
Adv. Mater.
32
,
1905443
(
2020
).
26.
X.
Fang
,
J.
Yan
,
L.
Hu
,
H.
Liu
, and
P. S.
Lee
,
Adv. Funct. Mater.
22
,
1613
(
2012
).
27.
X.
Xu
 et al,
Adv. Mater.
30
,
1803165
(
2018
).
28.
J.
Chen
,
Z.
Li
,
F.
Ni
,
W.
Ouyang
, and
X.
Fang
,
Mater. Horiz.
7
,
1828
(
2020
).
29.
C.-T.
Lee
,
T.-S.
Lin
,
H.-Y.
Lee
, and
D.-S.
Liu
,
J. Vac. Sci. Technol. B
36
,
061203
(
2018
).
30.
M.
Dutta
and
D.
Basak
,
Chem. Phys. Lett.
480
,
253
(
2009
).
31.
S.
Sarkar
and
D.
Basak
,
ACS Appl. Mater. Interfaces
7
,
16322
(
2015
).
32.
K. K.
Manga
,
S.
Wang
,
M.
Jaiswal
,
Q.
Bao
, and
K. P.
Loh
,
Adv. Mater.
22
,
5265
(
2010
).
33.
W.
Guo
,
S.
Xu
,
Z.
Wu
,
N.
Wang
,
M. M. T.
Loy
, and
S.
Du
,
Small
9
,
3031
(
2013
).
34.
C.
Soci
,
A.
Zhang
,
B.
Xiang
,
S. A.
Dayeh
,
D. P. R.
Aplin
,
J.
Park
,
X. Y.
Bao
,
Y. H.
Lo
, and
D.
Wang
,
Nano Lett.
7
,
1003
(
2007
).
35.
L.
Peng
,
L.
Hu
, and
X.
Fang
,
Adv. Mater.
25
,
5321
(
2013
).
36.
Q.
Xu
,
Q.
Cheng
,
J.
Zhong
,
W.
Cai
,
Z.
Zhang
,
Z.
Wu
, and
F.
Zhang
,
Nanotechnology
25
,
055501
(
2014
).
37.
C.
Ferrante
 et al,
Nat. Commun.
9
,
308
(
2018
).
38.
D.
Li
,
D.
Zhan
,
J.
Yan
,
C.
Sun
,
Z.
Li
,
Z.
Ni
,
L.
Liu
, and
Z.
Shen
,
J. Raman Spectrosc.
44
,
86
(
2013
).
39.
H.
Kind
,
H.
Yan
,
B.
Messer
,
M.
Law
, and
P.
Yang
,
Adv. Mater.
14
,
158
(
2002
).
40.
P. H.
Mutin
,
G.
Guerrero
, and
A.
Vioux
,
J. Mater. Chem.
15
,
3761
(
2005
).
41.
A.
Tuteja
,
W.
Choi
,
J. M.
Mabry
,
G. H.
McKinley
, and
R. E.
Cohen
,
Proc. Natl. Acad. Sci. U.S.A.
105
,
18200
(
2008
).
42.
A. K.
Kota
,
G.
Kwon
, and
A.
Tuteja
,
NPG Asia Mater.
6
,
e109
(
2014
).
43.
E.
Hoque
,
J. A.
DeRose
,
G.
Kulik
,
P.
Hoffmann
,
H. J.
Mathieu
, and
B.
Bhushan
,
J. Phys. Chem. B
110
,
10855
(
2006
).
44.
O. M.
Roscioni
,
L.
Muccioli
,
A.
Mityashin
,
J.
Cornil
, and
C.
Zannoni
,
J. Phys. Chem. C
120
,
14652
(
2016
).
45.
J. B. K.
Law
and
J. T. L.
Thong
,
Appl. Phys. Lett.
88
,
133114
(
2006
).
46.
J.
Zhou
,
Y.
Gu
,
Y.
Hu
,
W.
Mai
,
P.-H.
Yeh
,
G.
Bao
,
A. K.
Sood
,
D. L.
Polla
, and
Z. L.
Wang
,
Appl. Phys. Lett.
94
,
191103
(
2009
).
47.
B. D.
Boruah
,
D. B.
Ferry
,
A.
Mukherjee
, and
A.
Misra
,
Nanotechnology
26
,
235703
(
2015
).
48.
V. Q.
Dang
,
T. Q.
Trung
,
D.-I.
Kim
,
L. T.
Duy
,
B.-U.
Hwang
,
D.-W.
Lee
,
B.-Y.
Kim
,
L. D.
Toan
, and
N.-E.
Lee
,
Small
11
,
3054
(
2015
).
49.
W.-Y.
Kong
,
G.-A.
Wu
,
K.-Y.
Wang
,
T.-F.
Zhang
,
Y.-F.
Zou
,
D.-D.
Wang
, and
L.-B.
Luo
,
Adv. Mater.
28
,
10725
(
2016
).
50.
X.
Wang
,
B.
Liu
,
R.
Liu
,
Q.
Wang
,
X.
Hou
,
D.
Chen
,
R.
Wang
, and
G.
Shen
,
Angew. Chem. Int. Ed.
53
,
1849
(
2014
).
51.
Q.
Wang
,
X.
Guo
,
L.
Cai
,
Y.
Cao
,
L.
Gan
,
S.
Liu
,
Z.
Wang
,
H.
Zhang
, and
L.
Li
,
Chem. Sci.
2
,
1860
(
2011
).
52.
E.
Pargoletti
 et al,
ACS Appl. Mater. Interfaces
12
,
39549
(
2020
).
53.
L.
Zeng
,
L.
Tao
,
C.
Tang
,
B.
Zhou
,
H.
Long
,
Y.
Chai
,
S. P.
Lau
, and
Y. H.
Tsang
,
Sci. Rep.
6
,
20343
(
2016
).
You do not currently have access to this content.